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A B S T R A C T

Diagnostic tests are almost never perfect. Studies quantifying their performance use knowledge
of the true health status, measured with a reference diagnostic test. Researchers commonly
assume that the reference test is perfect, which is often not the case in practice. When
the assumption fails, conventional studies identify ‘‘apparent’’ performance or performance
with respect to the reference, but not true performance. This paper provides the smallest
possible bounds on the measures of true performance — sensitivity (true positive rate) and
specificity (true negative rate), or equivalently false positive and negative rates, in standard
settings. Implied bounds on policy-relevant parameters are derived: (1) Prevalence in screened
populations; (2) Predictive values. Methods for inference based on moment inequalities are
used to construct uniformly consistent confidence sets in level over a relevant family of
data distributions. Emergency Use Authorization (EUA) and independent study data for the
BinaxNOW COVID-19 antigen test demonstrate that the bounds can be very informative.
Analysis reveals that the estimated false negative rates for symptomatic and asymptomatic
patients are up to 3.17 and 4.59 times higher than the frequently cited ‘‘apparent’’ false negative
rate. Further applicability of the results in the context of imperfect proxies such as survey
responses and imputed protected classes is indicated.

1. Introduction

Diagnostic tests are indispensable in modern clinical decision making. As they are almost never perfect, evaluation of test
performance is a common research goal. Test performance studies seek to quantify test accuracy predominantly in the form of
sensitivity and specificity, also referred to as performance measures or operating characteristics. Sensitivity (true positive rate) is
the probability that a test will return a positive result for an individual who truly has the underlying condition, while specificity
(true negative rate) is the probability that a test will produce a negative result for an individual who does not have the underlying
condition. Equivalently, one can measure false positive and false negative rates. False negative rate and sensitivity sum to unity, as
do specificity and the false positive rate.

Determining sensitivity and specificity for a diagnostic test of interest, referred to as an index test, requires knowledge of the
true health status for all participants in the study. The true health status is most often unobservable, so a reference test is commonly
used in lieu of it. However, such tests are rarely perfect themselves. When the reference is imperfect, conventional studies only
identify ‘‘apparent’’ sensitivity and specificity, or the so-called rates of positive and negative agreement with the reference.1 They
measure performance with respect to the reference test and not true performance. Hence, ‘‘apparent’’ parameters are typically not of
interest. Moreover, the true performance measures are usually only partially identified, as shown in Section 2. In other words, there

E-mail address: obradovicfilip@u.northwestern.edu.
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exists a set of parameter values that are consistent with the observed data, called the identified set. The smallest such set under
maintained assumptions, or the set that exhausts all information from the data, is known as the sharp identified set. This paper
addresses the issue of finding, estimating and doing inference on the points in the sharp identified set for sensitivity and specificity,
or equivalently false negative and positive rates, under standard assumptions used in the literature.

I first characterize the sharp joint identified set for the true performance measures without imposing any assumptions on the
atent statistical dependence between the index and reference tests conditional on health status, assuming exact or approximate
nowledge of the reference test characteristics. The set is a line segment or a union of line segments in [0, 1]2, in contrast to

rectangular sets following from comparable existing bounds (Thibodeau, 1981; Emerson et al., 2018). The proposed framework
allows researchers to layer on additional assumptions regarding the latent dependence to further reduce the size of the set. This is
demonstrated through a formalization of an informally stated assumption from the literature which is plausible when the two tests
are physiologically related.

Sensitivity and specificity are frequently used to obtain other policy-relevant parameters. I present how the derived identified
sets may be utilized to sharply bound prevalence, or the population rate of illness, in populations screened by the index test. Bounds
may be markedly narrower than those implied by existing comparable methods, owing to the specific shape of the identified sets.
Implied bounds on predictive values, i.e. probabilities that a patient is sick conditional on observing a test result, are discussed in
Appendix A.

The FDA Statistical Guidance on Reporting Results Evaluating Diagnostic Tests2 requires diagnostic performance studies to report
confidence intervals for index test sensitivity and specificity to quantify the statistical uncertainty in the estimates. To conform to the
practice, I construct confidence sets for points in the identified set using an inference method based on moment inequalities (Romano
et al., 2014). The confidence sets are uniformly consistent in level over a large family of permissible distributions relevant in the
application. Namely, they asymptotically cover all points in the identified set uniformly over the family of population distributions
with probability of at least 1 − 𝛼, where 𝛼 is the chosen significance level.

Diagnostic test performance studies for rapid COVID-19 tests have a mandated RT-PCR reference test which is known to produce
false negative results, and thus pertain to the setting analyzed in the paper.3 Fitzpatrick et al. (2021) emphasize that the false
negative rate of the ubiquitous Abbott BinaxNOW COVID-19 Ag2 CARD rapid antigen test may be substantially understated by the
reported ‘‘apparent’’ analog due to imperfect reference tests.4

Application of the method to the data from the original Emergency Use Authorization (EUA) performance study, as well as
an independent study by Shah et al. (2021) bolsters this claim and reveals that bounds can be very informative. Depending on
interpretation, the results from both studies suggest that the test may not satisfy the initial FDA requirement for EUA of at least
80% estimated sensitivity, despite fulfilling the criterion of high ‘‘apparent’’ sensitivity, implying the need for alternative testing
protocols. Moreover, the estimated false negative rates for symptomatic and asymptomatic patients are up to 3.17 and 4.59 times
higher than the frequently cited ‘‘apparent’’ false negative rate, warranting further attention. Comparison with existing bounds
reveals that the proposed method can provide significant reductions in the size of the identified set for operating characteristics,
and consequently in the width of implied bounds on prevalence when the test is used for screening.

The methodological framework developed in the paper offers solutions to two issues in the current research practice guidelines
set forth by the FDA Statistical Guidance, as explained by Remark 4: (1) Inability to measure true test performance in common
settings; (2) Inability to compare index and reference test performance. It also addresses the concerns raised in Boyko et al. (1988):
‘‘When two tests are strongly suspected of being conditionally dependent, then the performance of one of these tests should probably not be
compared with that of the other, unless better methods are developed to sort out the degree of bias caused by reference test errors in the
presence of conditional dependence’’.

Provided replication files allow researchers to directly utilize the findings of the paper to obtain estimates and confidence sets
in their own work.5 Since the method does not require any changes to the data-collection process of standard studies, it can also be
readily applied to estimate test performance based on published data, as demonstrated by the application section of the paper.

Broader applicability of the approach is discussed in Section 6. It can be used to study features of the joint distribution between
a binary outcome and a binary latent variable measured with an imperfect proxy. Illustrative examples include variables such as
program participation as indicated by a survey response, or race, imputed using the Bayesian Improved Surname Geocoding (BISG)
algorithm. The method is appealing when validation studies measuring proxy misclassification rates exist. The bounds also readily
apply whenever one wishes to learn performance of a binary classifier by comparing it to another imperfect classifier or label, rather
than the ground truth, which is common in satellite imagery and other remote sensing applications.

1.1. Related literature

Gart and Buck (1966), Staquet et al. (1981), and Zhou et al. (2009) show that if the reference and index tests are statistically
independent conditional on the true health status, index test sensitivity and specificity are point identified, assuming exactly known
reference test performance measures (see also Hui and Walter, 1980). However, Vacek (1985), Valenstein (1990), Hui and Zhou

2 Link: https://www.fda.gov/media/71147/download (Last accessed: 12/25/2022).
3 Link: https://www.fda.gov/media/137907/download (Last accessed: 12/25/2022).
4 The test held 75% of the COVID-19 antigen test market share in the United States, according to Abbott Laboratories CEO Robert Ford on Q3 2021 Results
Earnings Call Transcript.
5 Available from: https://github.com/obradovicfilip/bounding_test_performance.
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(1998) and Emerson et al. (2018) elaborate that conditional independence may frequently be untenable. A salient case is when the
two tests are physiologically related, such as when they rely on the same type of sample (e.g. nasal swab or capillary blood) or
measure the same quantities (e.g. antibody reaction to tuberculin).

Tests are generally expected to be dependent, but the dependence structure is latent since true status is unobservable. Several
uthors explore how dependence between the tests may affect the direction of gold standard bias, defined as the difference between
he ‘‘apparent’’ and true performance measures (Deneef, 1987; Boyko et al., 1988). Valenstein (1990) concludes that when errors
ommitted by index and reference tests are highly correlated, the ‘‘apparent’’ measures may overstate the true parameters. However,
hey do not precisely define highly correlated errors, prompting the formalization of the assumption in this paper. Authors focus
n the direction of the effects of the conditional dependence, rather than on the magnitude. The purpose is to allow researchers
o determine whether their estimates are biased upwards or downwards. However, since the dependence cannot be measured, the
ractical relevance of these findings is diminished. Additionally, one could argue that the magnitude is perhaps even more important
han the direction of the bias.

A formal approach to the issue of unknown bias magnitude is found in Thibodeau (1981). Assuming that the reference and index
ests are positively correlated, and that the reference is at least as accurate as the index, the author bounds the bias. The framework
resented below does not require such assumptions. More recently, Emerson et al. (2018) sketch an argument for individual bounds
n sensitivity and specificity under similar assumptions used in this paper. This study contributes to the literature on gold standard
ias by presenting the sharp joint identified set for test performance measures, formalizing and incorporating existing dependence
ssumptions to further reduce its size, bounding derived parameters of interest, and providing an appropriate uniform inference
rocedure.

In doing so, it builds upon on existing work on partial identification (Manski, 2003, 2007). Proposition 1 revitalizes the general
nalysis of Cross and Manski (2002) in the context of diagnostic test performance measurements. Technical contributions over their
ork primarily lie within the novel identification findings in Propositions 2 and 3, as well as the inference procedure for the points

n the identified set that is uniformly consistent in level. The procedure assumes a mild and easily interpretable restriction on the
amily of population distributions, and relies on existing methods for inference in moment inequality models (Andrews and Soares,
010; Andrews and Barwick, 2012; Chernozhukov et al., 2013; Romano et al., 2014; Canay and Shaikh, 2017; Bugni et al., 2017;
hernozhukov et al., 2019; Kaido et al., 2019; Bai et al., 2021).

This paper aligns with a growing body of literature concerning partial identification in medical and epidemiological research
Bhattacharya et al., 2012; Manski, 2020; Toulis, 2021; Manski and Molinari, 2021; Ziegler, 2021; Stoye, 2022). It also aims to
ontribute to the corpus of COVID-19 test performance studies by estimating the true sensitivity and specificity for COVID-19 antigen
ests despite reference test imperfections under plausible assumptions. (Shah et al., 2021; Pollock et al., 2021; Siddiqui et al., 2021).

The remainder of the paper is organized as follows. Section 2 provides the identification argument. Section 3 discusses
dentification of prevalence. Section 4 explains estimation and inference. Section 5 presents confidence and estimated identified
ets for the operating characteristics of the COVID-19 antigen test. Section 6 indicates uses of the results beyond the context of
iagnostic test performance studies. Section 7 concludes. Appendix A derives bounds on predictive values. All proofs are collected
n Appendix E.

. Identification

Studies quantifying the performance of a test of interest, also known as an index test, require knowledge of the true health
tatus. Health status is usually unobservable, so it is determined by an alternative test, called the reference test. Even though the
eference test should be the best available test for the underlying condition, it is almost always imperfect in practice, giving rise to
dentification issues. Let 𝑡 = 1 and 𝑟 = 1 if the index and reference tests, respectively, yield positive results and 𝑡 = 0, 𝑟 = 0 otherwise.
et 𝑦 = 1 denote the existence of the underlying condition we are testing for and 𝑦 = 0 the absence of it.6

We are interested in learning the sensitivity and specificity of the index test:

Sensitivity: 𝜃1 = 𝑃 (𝑡 = 1|𝑦 = 1) (1)

Specificity: 𝜃0 = 𝑃 (𝑡 = 0|𝑦 = 0) (2)

hich are defined when 𝑃 (𝑦 = 1) ∈ (0, 1) in the study population. Equivalently, one can study the false negative and false positive
ates, 1−𝜃1 and 1−𝜃0. Similarly, define reference test sensitivity 𝑠1 = 𝑃 (𝑟 = 1|𝑦 = 1) and specificity 𝑠0 = 𝑃 (𝑟 = 0|𝑦 = 0). Data collection
n test performance studies is commonly done by testing all participants with both the reference and index tests. The observed
utcome for each participant is (𝑡, 𝑟) ∈ {0, 1}2. The data identify the joint probability distribution 𝑃 (𝑡, 𝑟). When 𝑃 (𝑟 = 1) ∈ (0, 1),

‘apparent’’ sensitivity 𝜃1 = 𝑃 (𝑡 = 1|𝑟 = 1), and ‘‘apparent’’ specificity 𝜃0 = 𝑃 (𝑡 = 0|𝑟 = 0) are also identified.
It is typically assumed that the reference test is perfect, so that 𝑟 = 𝑦. Then (𝜃1, 𝜃0) = (𝜃1, 𝜃0). This is rarely the case in practice.

enerally, 𝜃𝑗 ≠ 𝜃𝑗 for some 𝑗 = 0, 1, which referred to as gold standard bias. Interpreting (𝜃1, 𝜃0) as true performance measures can
ead to severely misleading conclusions due to the bias. Alternatively, researchers may explicitly study (𝜃1, 𝜃0). However, they only
easure performance of 𝑡 with respect to 𝑟, and not 𝑦. If one wishes to learn about true performance (𝜃1, 𝜃0), then these parameters

re not of interest.

6 I interchangeably say that the person is ill when 𝑦 = 1 and when 𝑦 = 0, that they are healthy. This can be extended to encompass antibody tests with minor

emantic changes, since they can also measure if a person has been ill.
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Remark 1. Index test 𝑡 is usually a novel test, evaluated against the best currently available test 𝑟. In some settings, use of 𝑟 may
not be practical outside the performance study due to high costs, long turnaround time or invasiveness. For example, a reference
test for some types of dementia is a postmortem neuropathological report which is not helpful for diagnosis. Viral antigen tests may
be preferred over reference RT-PCR tests for screening purposes due to lower resource requirements.

Focusing the analysis on binary tests and binary health statuses is standard procedure. FDA Statistical Guidance on Reporting
Results Evaluating Diagnostic Tests recognizes only binary reference tests and health statuses, explicitly stating: ‘‘A reference standard
... divides the intended use population into only two groups (condition present or absent)’’. Many tests that yield discrete or continuous
test results, such as RT-PCR tests, are reduced to binary tests by thresholding in practice. While the results of this paper can be
extended to cases in which ranges of 𝑡 and 𝑟 are finite sets, I limit the analysis to the binary setting to conform to current research
practice.

The section begins by outlining the formal assumptions used. I then provide the set of parameter values (𝜃1, 𝜃0) consistent with
the observed data, also known as the identified set, without imposing any assumptions on the statistical dependence between 𝑡 and
𝑟. The set is sharp, or the smallest possible under maintained assumptions. For simplicity of exposition, this is first done when (𝑠1, 𝑠0)
are known. I show how an additional assumption on the dependence structure between the two tests can be used to further reduce
the size of the sharp identified set. Finally, I allow (𝑠1, 𝑠0) to be approximately known by assuming (𝑠1, 𝑠0) ∈ , where  is some
known set.

2.1. Assumptions

The framework in this paper relies on common assumptions maintained in the literature.

Assumption 1 (Random Sampling). The study sample is a sequence of i.i.d random vectors 𝑊𝑖 = (𝑡𝑖, 𝑟𝑖), where each 𝑊𝑖 follows a
ategorical distribution 𝑃 (𝑡, 𝑟) for (𝑡, 𝑟) ∈ {0, 1}2 and 𝑖 = 1,… , 𝑛.

The distribution 𝑃 (𝑡, 𝑟) is a marginal of the joint distribution 𝑃 (𝑡, 𝑟, 𝑦). Since 𝑦 is not observable, 𝑃 (𝑡, 𝑟, 𝑦) is not point identified.

ssumption 2 (Reference Performance). Sensitivity and specificity of the reference test 𝑠1 = 𝑃 (𝑟 = 1|𝑦 = 1) and 𝑠0 = 𝑃 (𝑟 = 0|𝑦 = 0)
re known, and 𝑠1 > 1 − 𝑠0.

The analysis is first done for the simple case when (𝑠1, 𝑠0) are known exactly. The approach is then generalized in Section 2.4
y assuming (𝑠1, 𝑠0) ∈ , where  is some known set. Thus, reference test performance needs to be known only approximately. The
eneralization can also be used to perform sensitivity analyses. Knowledge of (𝑠1, 𝑠0) or  is commonly assumed in work dealing
ith gold standard bias correction, such as Gart and Buck (1966), Thibodeau (1981), Staquet et al. (1981), and Emerson et al.

2018). The current norm of relying on the assumption that the reference test is perfect means that researchers regularly maintain
𝑠1, 𝑠0) = (1, 1), which is a stronger condition since it implies Assumption 2. The framework hence weakens standard assumptions.
owever, knowledge of (𝑠1, 𝑠0) or  is a crucial identifying assumption and warrants further discussion.

Assumption 2 is particularly appealing when one has access to a study that identifies performance of 𝑟. Mathews et al. (2010)
nd Matos et al. (2011) justify assumed (𝑠1, 𝑠0) based on such studies. In specific settings, 𝑦 may indeed be plausibly observable,
llowing for identification of (𝑠1, 𝑠0). However, the procedure needed to observe 𝑦 may be exceedingly costly, invasive, or have
n unsuitably long turnaround time for widespread use in performance measurement. Thus, 𝑟 is commonly used as a reference
or 𝑡 instead. For example, a neuropathological autopsy report is the only way to pose a definitive diagnosis of Alzheimer’s disease,
.e. observe 𝑦 (Suemoto and Leite, 2023). Studies of novel tests 𝑡 for Alzheimer’s disease frequently use an amyloid positron emission
omography (PET) scan or a clinical diagnosis as 𝑟, since a neuropathological report may be unobtainable (Budelier and Bateman,
020; Wang et al., 2023). Autopsy performance studies for 𝑟 in which 𝑦 is directly observed post-mortem are available, identifying
erformance of 𝑟 (Patwardhan et al., 2004).

Unfortunately, in many cases such a performance study for 𝑟 does not exist. Nevertheless, tests are often expected to have
recisely measured analytical performance measures. Analytical specificity and sensitivity are defined as performance measures
btained based on contrived, rather than clinical samples. This may provide some information on how 𝑟 will perform in clinical
ettings. For example, Kucirka et al. (2020) and Kanji et al. (2021) maintain that COVID-19 RT-PCR tests are perfectly specific owing
o the absence of cross-reactivity with other pathogens, that is, due to its perfect analytical specificity.7

The commonly maintained assumption (𝑠1, 𝑠0) = (1, 1) has been disputed for a plethora of reference tests. This fact indicates
hat at least a set  of more credible values (𝑠1, 𝑠0) exists for a variety of tests used as 𝑟. In these cases, the method will yield sharp
ounds on (𝜃1, 𝜃0). However, if nothing can be credibly assumed about the performance of 𝑟, one cannot reasonably use it to identify
erformance of 𝑡. This is not a novel observation, but it highlights the importance of the assumption. Emerson et al. (2018) state:

‘If very little is known about the reference test performance, then it is clear that a comparison to such a reference test is a futile exercise
nd can provide no information about a new test.’’ Gart and Buck (1966) similarly note that when (𝑠1, 𝑠0) are unknown, both 𝑡 ⟂⟂ 𝑦 or
⟂̸⟂ 𝑦 will generally be consistent with 𝑃 (𝑡, 𝑟). The choice of (𝑠1, 𝑠0) is context-specific, and should be carefully considered in each
tudy.

7 Specificity on contrived laboratory samples containing other pathogens, but not SARS-CoV-2.
4 



F. Obradović

p
𝑟

A

n
t

e
1
t
t
r
m
t
t
m

2

u
g
𝑠

f

a

𝑘

Journal of Econometrics 244 (2024) 105842 
I further assume that 𝑠1 > 1 − 𝑠0, or that the reference test is reasonable.8 If 𝑠1 = 1 − 𝑠0, one can show that 𝑟 ⟂⟂ 𝑦, so the test
rovides no information on 𝑦. Tests are costly, and any use of such test is not rational. If 𝑠1 < 1− 𝑠0, it would be possible to redefine
∗ = 1 − 𝑟, so that 𝑠∗1 = 1 − 𝑠1 and 𝑠∗0 = 1 − 𝑠0. Now 𝑠∗1 > 1 − 𝑠∗0, since 1 − 𝑠1 > 𝑠0.

ssumption 3 (Bounded Prevalence). Population prevalence 𝑃 (𝑦 = 1) satisfies 0 < 𝑃 (𝑦 = 1) < 1.

The assumption is implicitly found in all diagnostic test performance studies measuring sensitivity and specificity, since it is
ecessary for them to be defined. Assumptions 2 and 3 imply that 𝑃 (𝑟 = 1) ∈ (1 − 𝑠0, 𝑠1). If the condition fails, at least one of the
wo assumptions are refuted.

If one additionally maintains that 𝑡 ⟂⟂ 𝑟|𝑦, then (𝜃1, 𝜃0) are point identified (Gart and Buck, 1966; Staquet et al., 1981, and Zhou
t al., 2009). However, it is well established that conditional independence is generally untenable (Valenstein, 1990; Hui and Zhou,
998 and Emerson et al., 2018). Dependence may arise 𝑡 and 𝑟 are physiologically related, such as when they rely on the same
ype of sample or measure the same quantities. For example, tine and Mantoux tests may be dependent since they both rely on
he antibody reaction to tuberculin (Vacek, 1985), and direct immunoassay and culture swab tests for Group A streptococci may be
elated since they rely on the same type of sample (Valenstein, 1990). Since 𝑦 is unobserved, the dependence structure is latent, and
ultiple structures may be consistent with the data distribution 𝑃 (𝑡, 𝑟). This leads to a possibly non-singleton set of values (𝜃1, 𝜃0)

hat are consistent with the data, called the identified set. We would first like to learn this set without imposing any assumptions on
he statistical dependence structure between 𝑡 and 𝑟 conditional on 𝑦. Additional assumptions on the possible dependence structures
ay then be used to reduce the size of the identified set, as shown in Section 2.3.

.2. Identified set for (𝜃1, 𝜃0)

The data reveal 𝑃 (𝑡, 𝑟), while probability distributions involving 𝑦 are not directly observable. Still, 𝑃 (𝑟, 𝑦) can be determined
sing (𝑠1, 𝑠0) and 𝑃 (𝑡, 𝑟). I henceforth use 𝑃𝑠1 ,𝑠0 to denote probability distributions that are derived from observable distributions
iven (𝑠1, 𝑠0). All directly observable distributions, such as 𝑃 (𝑡, 𝑟), do not have the subscript. By the law of total probability and
1 ≠ 1 − 𝑠0 from Assumption 2:

𝑃 (𝑟 = 1) = 𝑠1𝑃𝑠1 ,𝑠0 (𝑦 = 1) + (1 − 𝑠0)𝑃𝑠1 ,𝑠0 (𝑦 = 0) ⇔ 𝑃𝑠1 ,𝑠0 (𝑦 = 1) =
𝑃 (𝑟 = 1) + 𝑠0 − 1

𝑠1 + 𝑠0 − 1
. (3)

𝑃𝑠1 ,𝑠0 (𝑟, 𝑦) is then known from 𝑃𝑠1 ,𝑠0 (𝑟, 𝑦) = 𝑃𝑠1 ,𝑠0 (𝑟|𝑦)𝑃𝑠1 ,𝑠0 (𝑦), since (𝑠1, 𝑠0) fully characterize 𝑃𝑠1 ,𝑠0 (𝑟|𝑦). To outline the idea of
inding the identified set, first note that for 𝑗 = 0, 1:

𝜃𝑗 = 𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗|𝑦 = 𝑗) =
𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 0, 𝑦 = 𝑗) + 𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 1, 𝑦 = 𝑗)

𝑃𝑠1 ,𝑠0 (𝑦 = 𝑗)
. (4)

Probabilities 𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 𝑘, 𝑦 = 𝑗) for 𝑘 = 0, 1 are unobservable. However, they can be bounded using the knowledge of 𝑃 (𝑡, 𝑟)
nd 𝑃𝑠1 ,𝑠0 (𝑟, 𝑦). By the properties of probability measures, an upper bound on 𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 𝑘, 𝑦 = 𝑗) is 𝑚𝑖𝑛

(

𝑃 (𝑡 = 𝑗, 𝑟 = 𝑘), 𝑃𝑠1 ,𝑠0 (𝑟 =

, 𝑦 = 𝑗)
)

. To form a lower bound, one can similarly find that 𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 𝑘, 𝑦 = 1− 𝑗) ≤ 𝑚𝑖𝑛
(

𝑃 (𝑡 = 𝑗, 𝑟 = 𝑘), 𝑃𝑠1 ,𝑠0 (𝑟 = 𝑘, 𝑦 = 1− 𝑗)
)

and use:

𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 𝑘, 𝑦 = 𝑗) = 𝑃 (𝑡 = 𝑗, 𝑟 = 𝑘) − 𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 𝑘, 𝑦 = 1 − 𝑗)

≥ 𝑚𝑎𝑥
(

0, 𝑃 (𝑡 = 𝑗, 𝑟 = 𝑘) − 𝑃𝑠1 ,𝑠0 (𝑟 = 𝑘, 𝑦 = 1 − 𝑗)
)

.
(5)

Note that these coincide with Fréchet–Hoeffding bounds for 𝑃 (𝑡 = 𝑗, 𝑦 = 𝑗|𝑟 = 𝑘) multiplied by 𝑃 (𝑟 = 𝑘). Proof of Proposition 1
demonstrates that any pair of values for 𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 0, 𝑦 = 𝑗) and 𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 1, 𝑦 = 𝑗) within their respective bounds is
consistent with the observed data. Hence, sharp bounds on 𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑦 = 𝑗) are obtained by summing the two individual set of
bounds. The sharp bounds for 𝜃𝑗 then follow directly from (3) and (4). Finally, the sharp joint identified set for (𝜃1, 𝜃0) is derived
using 𝑃 (𝑡 = 1) = 𝜃1𝑃𝑠1 ,𝑠0 (𝑦 = 1) + (1 − 𝜃0)𝑃𝑠1 ,𝑠0 (𝑦 = 0). Observe that no restrictions beyond those set by the distribution 𝑃 (𝑡, 𝑟) are
imposed on the latent dependence structure of 𝑡 and 𝑟 conditional on 𝑦.

Proposition 1. The sharp identified set (𝜃1 ,𝜃0)(𝑠1, 𝑠0) for (𝜃1, 𝜃0) given reference test sensitivity 𝑠1 and specificity 𝑠0 is:

(𝜃1 ,𝜃0)(𝑠1, 𝑠0) =

{

(𝑡1, 𝑡0) ∶ 𝑡0 = 𝑡1
𝑃𝑠1 ,𝑠0 (𝑦 = 1)
𝑃𝑠1 ,𝑠0 (𝑦 = 0)

+ 1 −
𝑃 (𝑡 = 1)

𝑃𝑠1 ,𝑠0 (𝑦 = 0)
, 𝑡𝑗 ∈ 𝜃𝑗 (𝑠1, 𝑠0)

}

(6)

8 The assumption does not require that both 𝑠 and 𝑠 are high. Indeed, it is possible that either 𝑠 or 𝑠 are close to 0, but that their sum is higher than 1.
1 0 1 0
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where 𝜃𝑗 (𝑠1, 𝑠0) =
[

𝜃𝐿𝑗 , 𝜃
𝑈
𝑗

]

is the sharp bound on 𝜃𝑗 defined as:

𝜃𝐿𝑗 =

[

𝑚𝑎𝑥
(

0, 𝑃 (𝑡 = 𝑗, 𝑟 = 𝑗) − 𝑃𝑠1 ,𝑠0 (𝑟 = 𝑗, 𝑦 = 1 − 𝑗)
)

+ 𝑚𝑎𝑥
(

0, 𝑃𝑠1 ,𝑠0 (𝑟 = 1 − 𝑗, 𝑦 = 𝑗) − 𝑃 (𝑡 = 1 − 𝑗, 𝑟 = 1 − 𝑗)
)

]

1
𝑃𝑠1 ,𝑠0 (𝑦 = 𝑗)

𝜃𝑈𝑗 =

[

𝑚𝑖𝑛
(

𝑃 (𝑡 = 𝑗, 𝑟 = 1 − 𝑗), 𝑃𝑠1 ,𝑠0 (𝑟 = 1 − 𝑗, 𝑦 = 𝑗)
)

+ 𝑚𝑖𝑛
(

𝑃 (𝑡 = 𝑗, 𝑟 = 𝑗), 𝑃𝑠1 ,𝑠0 (𝑟 = 𝑗, 𝑦 = 𝑗)
)

]

1
𝑃𝑠1 ,𝑠0 (𝑦 = 𝑗)

.

(7)

Proposition 1 revitalizes the general identification result of Cross and Manski (2002). Arguments therein can also be used to
derive the identified set for (𝜃1, 𝜃0).9 Namely, 𝑃 (𝑡|𝑟) and 𝑃𝑠1 ,𝑠0 (𝑦|𝑟) are identified from 𝑃 (𝑡, 𝑟) and (𝑠1, 𝑠0), yielding the identified
et for the vector (𝐸[𝑡|𝑟 = 𝑗, 𝑦 = 𝑘])(𝑗,𝑘)∈{0,1}2 .10 Sharp bounds on (𝜃1, 𝜃0) = (𝐸[𝑡|𝑦 = 1], 1 − 𝐸[𝑡|𝑦 = 0]) follow. This paper relies on
constructive proof approach which can be adapted to accommodate assumptions on the latent dependence structure of 𝑡 and 𝑟

onditional on 𝑦. Section 2.3 introduces a novel formalization of an informally stated assumption from the literature and exploits
his feature to further tighten the bounds.

The set (𝜃1 ,𝜃0)(𝑠1, 𝑠0) is a line segment on [0, 1]2 for a given value of reference test operating characteristics 𝑠1 and 𝑠0. It collapses
o a point (𝜃1, 𝜃0) when (𝑠1, 𝑠0) = (1, 1). Emerson et al. (2018) sketch an argument for individual bounds on 𝜃𝑗 as in (7) and do not
iscuss sharpness or the joint identified set. Proposition 1 goes further by proving that both individual bounds and the joint identified
ets are the smallest possible under the assumptions. Section 3 shows that the linear structure of the set (𝜃1 ,𝜃0)(𝑠1, 𝑠0) is crucial for
harpness of bounds on certain derived policy-relevant parameters, such as the illness rate in populations screened with the test
, otherwise known as prevalence. Bounds on prevalence are unnecessarily wide if any pair of values (𝜃1, 𝜃0) from their individual
ounds is considered feasible, so that the joint identified set is a rectangle 𝜃1 (𝑠1, 𝑠0) ×𝜃0 (𝑠1, 𝑠0). The sharp joint identified set for
alse negative and false positive rates (1− 𝜃1, 1− 𝜃0) also directly follows from (𝜃1 ,𝜃0)(𝑠1, 𝑠0). The same will hold for other identified
ets for (𝜃1, 𝜃0) below.

xample 1. Consider a study in which (𝑠1, 𝑠0) = (0.9, 0.9), 𝑃 (𝑡 = 𝑗, 𝑟 = 𝑗) = 0.45 and 𝑃 (𝑡 = 𝑗, 𝑟 = 1−𝑗) = 0.05 for 𝑗 = 0, 1. (𝜃1 ,𝜃0)(𝑠1, 𝑠0)
s a line segment connecting (0.8, 0.8) and (1, 1).

The identified set for (𝜃1, 𝜃0) is sharp. Encountering wide bounds on sensitivity and specificity implies that it is not possible to
earn the operating characteristics more precisely without additional assumptions that may be untenable, or without changing the
eference test. Since the reference test is supposed to be the best available test, researchers and practitioners may have to embrace
he ambiguity regarding the index test performance.

emark 2. Conventional studies maintain that the reference test is perfect (𝑠1, 𝑠0) = (1, 1) ≥ (𝜃1, 𝜃0) component-wise, so 𝑡 is
rrefutably assumed to perform at most as well as 𝑟 in both dimensions. The bounds allow one to empirically compare index and
eference test performance for certain 𝑃 (𝑡, 𝑟) and (𝑠1, 𝑠0). This is possible in the following cases:

1. (𝜃1, 𝜃0) < (𝑠1, 𝑠0) component-wise for all (𝜃1, 𝜃0) ∈ (𝜃1 ,𝜃0)(𝑠1, 𝑠0), demonstrating that 𝑟 outperforms 𝑡 in both dimensions;
2. 𝜃𝑗 > 𝑠𝑗 for a single 𝑗 and all (𝜃1, 𝜃0) ∈ (𝜃1 ,𝜃0)(𝑠1, 𝑠0), demonstrating that 𝑡 outperforms 𝑟 in one dimension.

Lemma 3 in Appendix D shows that (𝜃1, 𝜃0) > (𝑠1, 𝑠0) component-wise is impossible for all (𝜃1, 𝜃0) ∈ (𝜃1 ,𝜃0)(𝑠1, 𝑠0). That is, a
ingle study cannot show that 𝑡 outperforms 𝑟 in both dimensions. As illustrated by Example 1, it is also possible that there exist
𝜃1, 𝜃0), (𝜃′1, 𝜃

′
0) ∈ (𝜃1 ,𝜃0)(𝑠1, 𝑠0) such that (𝜃1, 𝜃0) > (𝑠1, 𝑠0) and (𝜃′1, 𝜃

′
0) ≤ (𝑠1, 𝑠0) component-wise. This indicates that 𝑡 or 𝑟 may

utperform the other test in both dimensions, but it is inconclusive. One cannot exclude the possibility that either test outperforms
he other.

emark 3. Depending on (𝑠1, 𝑠0) and 𝑃 (𝑡, 𝑟), ‘‘apparent’’ measures (𝜃1, 𝜃0) need not be contained in the identified set for (𝜃1, 𝜃0). In
hat sense, (𝜃1, 𝜃0) may be over- or understating (𝜃1, 𝜃0). A relevant empirical example is found in Section 5.

emark 4. The FDA Statistical Guidance defines a reference standard for a condition as: ‘‘The best available method for establishing the
resence or absence of the target condition. ... established by opinion and practice within the medical, laboratory, and regulatory community’’.
he guidance does not require a reference standard to be perfect, as it rarely is. When used as a reference test, the estimates may be
eported as pertaining to sensitivity and specificity, even though the estimands are ‘‘apparent’’ measures when it is imperfect. This

9 I thank an anonymous referee for bringing this to my attention.
10 𝑃𝑠1 ,𝑠0 (𝑦 = 𝑗|𝑟 = 1 − 𝑗) = 0 when 𝑠𝑗 = 1 for some 𝑗, which violates the assumptions of Cross and Manski (2002). It is still possible to utilize their results by
ounding only 𝐸[𝑡|𝑟 = 𝑗, 𝑦 = 1], 𝐸[𝑡|𝑟 = 𝑗, 𝑦 = 0] .
( )
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practice can be misleading. Tests other than the reference standard may be used as reference tests. However, then the estimates
should be reported as ‘‘apparent’’. If one wishes to learn true test performance, they are typically not of interest.

The guidance does not require or suggest any corrections that would allow researchers to form adequate estimates of the true
perating characteristics in either case. The method in this paper proposes a solution by forming the smallest possible bounds on true
erformance measures under standard assumptions. Furthermore, the guidance emphasizes that in a conventional study one cannot
etermine whether 𝑡 or 𝑟 has better performance. Remark 2 clarifies that bounds allow for comparison of performance between the
wo tests in certain cases.

emark 5. Bounds in (7) could be formed from the marginals 𝑃 (𝑡 = 𝑗) and 𝑃𝑠1 ,𝑠0 (𝑦 = 𝑗) as 𝜃𝑗 ∈
[

𝑚𝑎𝑥
(

0, 𝑃 (𝑡 = 𝑗) + 𝑃𝑠1 ,𝑠0 (𝑦 =

1 − 𝑗)
)

, 𝑚𝑖𝑛
(

𝑃 (𝑡 = 𝑗), 𝑃𝑠1 ,𝑠0 (𝑦 = 𝑗)
)]

1
𝑃𝑠1 ,𝑠0 (𝑦=𝑗)

. The literature on data combination suggests that these are not sharp, as outlined
by Ridder and Moffitt (2007). Lemma 2 in Appendix D shows that they are at least as wide as those in Proposition 1.

2.3. Misclassification assumptions

Points in the identified set (𝜃1 ,𝜃0)(𝑠1, 𝑠0) derived in the previous section correspond to different non-observable probability
istributions 𝑃𝑠1 ,𝑠0 (𝑡, 𝑟, 𝑦) that are consistent with the identified distribution 𝑃 (𝑡, 𝑟) and (𝑠1, 𝑠0). Until this point no additional
estrictions on the dependence structure between 𝑡, 𝑟 and 𝑦 were imposed. Literature on gold standard bias suggests that 𝑡 and 𝑟
ay frequently be dependent conditional on 𝑦 in ways that would further restrict the set of distributions 𝑃𝑠1 ,𝑠0 (𝑡, 𝑟, 𝑦) consistent with

he data, resulting in more informative identified sets for (𝜃1, 𝜃0). It is thus important to incorporate assumptions on the dependence
tructure into the framework.

A particular kind of restrictions that researchers may be willing to consider concern the error probabilities of 𝑡 conditional on 𝑟
aking a misclassification error for a specific value of 𝑦. Researchers may scrutinize the credibility of such assumptions based on
hysical properties of the two tests. Valenstein (1990) informally discusses one such restriction. The author analyzes the magnitude
f the difference 𝜃𝑗−𝜃𝑗 for 𝑗 = 0, 1 by means of a numerical example when the two tests have classification errors that are referred to
s ‘‘highly correlated’’. The meaning of highly correlated errors is not formally defined, and in the numerical example the assumption
s imposed as 𝑃 (𝑡 ≠ 𝑦|𝑟 ≠ 𝑦, 𝑦) = 𝑃 (𝑡 = 1 − 𝑦|𝑟 = 1 − 𝑦, 𝑦) = 1 for all 𝑦. I formalize this assumption and derive the resulting sharp
dentified set for (𝜃1, 𝜃0). Given that its plausibility may vary across health statuses, I allow it to hold only for a particular value of
.

efinition 1 (Tendency to Wrongly Agree). An index test has a tendency to wrongly agree with the reference test for disease status
𝑦̄ given (𝑠1, 𝑠0) if 𝑃𝑠1 ,𝑠0 (𝑡 = 1 − 𝑦̄|𝑟 = 1 − 𝑦̄, 𝑦 = 𝑦̄) ≥ 𝑃𝑠1 ,𝑠0 (𝑡 = 𝑦̄|𝑟 = 1 − 𝑦̄, 𝑦 = 𝑦̄).

If an index test exhibits a tendency to wrongly agree with the reference test for 𝑦̄, conditional on the reference test making
classification error, the index test is more likely to misdiagnose the patient than to diagnose them correctly. Valenstein (1990)

xplains that the tendency may arise if the two tests have common properties, such as the type of sample used, e.g. the same swab
ype.

roposition 2. Let 𝜃𝐿𝑗 be as in (7). When the index and reference tests have a tendency to wrongly agree only for 𝑦 = 𝑗, the sharp bounds
n 𝜃𝑗 given (𝑠1, 𝑠0) are ̄𝜃𝑗 (𝑠1, 𝑠0) =

[

𝜃𝐿𝑗 , 𝜃̄
𝑈
𝑗

]

, where:

𝜃̄𝑈𝑗 =

[

𝑚𝑖𝑛
(

𝑃 (𝑡 = 𝑗, 𝑟 = 1 − 𝑗),
𝑃𝑠1 ,𝑠0 (𝑟 = 1 − 𝑗, 𝑦 = 𝑗)

2

)

+ 𝑚𝑖𝑛
(

𝑃 (𝑡 = 𝑗, 𝑟 = 𝑗), 𝑃𝑠1 ,𝑠0 (𝑟 = 𝑗, 𝑦 = 𝑗)
)

]

1
𝑃𝑠1 ,𝑠0 (𝑦 = 𝑗)

.

(8)

If the index and reference tests have a tendency to wrongly agree for 𝑦 = 0 and 𝑦 = 1, the sharp bounds on 𝜃𝑗 for 𝑗 = 0, 1 given (𝑠1, 𝑠0) are
̄̄𝜃𝑗 (𝑠1, 𝑠0) =

[

𝜃𝐿𝑗 ,
̄̄𝜃𝑈𝑗

]

, where:

̄̄𝜃𝑈𝑗 =

[

𝑚𝑖𝑛
(

𝑃 (𝑡 = 𝑗, 𝑟 = 1 − 𝑗),
𝑃𝑠1 ,𝑠0 (𝑟 = 1 − 𝑗, 𝑦 = 𝑗)

2

)

+ 𝑚𝑖𝑛
(

𝑃 (𝑡 = 𝑗, 𝑟 = 𝑗) −
𝑃𝑠1 ,𝑠0 (𝑟 = 𝑗, 𝑦 = 1 − 𝑗)

2
, 𝑃𝑠1 ,𝑠0 (𝑟 = 𝑗, 𝑦 = 𝑗)

)

]

1
𝑃𝑠1 ,𝑠0 (𝑦 = 𝑗)

.

(9)

Sharp joint identified sets ̄(𝜃1 ,𝜃0)(𝑠1, 𝑠0) and
̄̄(𝜃1 ,𝜃0)(𝑠1, 𝑠0) for (𝜃1, 𝜃0) given (𝑠1, 𝑠0) follow from (6), ̄𝜃𝑗 (𝑠1, 𝑠0), and

̄̄𝜃𝑗 (𝑠1, 𝑠0).

Proposition 2 provides sharp identified sets for (𝜃1, 𝜃0) when the researcher maintains that the tests have a tendency to wrongly
gree for only one or both health statuses.11 Both sets given (𝑠1, 𝑠0) are again line segments in [0, 1]2. The bounds

[

𝜃𝐿𝑗 , 𝜃̄
𝑈
𝑗

]

, and

11 One can also define the tendency to correctly disagree for disease status 𝑦̄ as 𝑃𝑠1 ,𝑠0 (𝑡 = 1 − 𝑦̄|𝑟 = 1 − 𝑦̄, 𝑦 = 𝑦̄) ≤ 𝑃𝑠1 ,𝑠0 (𝑡 = 𝑦̄|𝑟 = 1 − 𝑦̄, 𝑦 = 𝑦̄). Identified sets that
ollow can easily be derived symmetrically. Thibodeau (1981) emphasizes that tests are generally not expected to exhibit negative dependence. However, the

ormulation may be beneficial in applications described in Section 6.
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[

𝜃𝐿𝑗 ,
̄̄𝜃𝑈𝑗

]

imply that the sets may be reduced in size only from above compared to (𝜃1 ,𝜃0)(𝑠1, 𝑠0). This can be seen in Example 2
elow.

It is important to note that the assumption may or may not have identifying power for a given 𝑃 (𝑡, 𝑟) and (𝑠1, 𝑠0). This is evident
n the empirical application. Remark 15 notes that the assumption effectively halves the size of the estimated identified set in one
opulation, but has no effect in the remaining two. Remark 6 characterizes sufficient and necessary conditions for the assumption
o have identifying power, and provides an easily verifiable necessary condition.

emark 6. Lemma 4 in Appendix D shows that the tendency to wrongly agree for 𝑦 = 𝑗 has identifying power if and only if
(𝑡 = 𝑗, 𝑟 = 1 − 𝑗) >

𝑃𝑠1 ,𝑠0 (𝑟=1−𝑗,𝑦=𝑗)
2 > 0. If 𝑠𝑗 = 1, the assumption cannot have identifying power.

For the purpose of interpreting this result, suppose that tendency to wrongly agree holds for 𝑦 = 𝑗. If 𝑠𝑗 = 1, {𝑟 = 1 − 𝑗, 𝑦 = 𝑗} is
a probability zero event and properties of 𝑡 on it are inconsequential. Having 𝑠𝑗 < 1 is thus necessary for reducing the size of the
identified set. Assumption 3 and 𝑠𝑗 < 1 imply 𝑃𝑠1 ,𝑠0 (𝑟 = 1− 𝑗, 𝑦 = 𝑗) > 0. For the assumption to have identifying power we then only
need 𝑃 (𝑡 = 𝑗, 𝑟 = 1− 𝑗) to be ‘‘large enough’’. The definition of ‘‘large enough’’ is contingent upon 𝑃 (𝑟 = 1) and (𝑠1, 𝑠0). In Example 2
below, the threshold is 𝑃 (𝑡 = 𝑗, 𝑟 = 1 − 𝑗) > 2.5% for 𝑗 ∈ {0, 1}.

Example 2. Consider the study as in Example 1. If the tests have a tendency to wrongly agree for 𝑦 = 1, ̄(𝜃1 ,𝜃0)(𝑠1, 𝑠0) is a line
segment with end points (0.8, 0.8) and (0.95, 0.95). If they have a tendency to wrongly agree for any 𝑦, ̄̄(𝜃1 ,𝜃0)(𝑠1, 𝑠0) is a line segment
with end points (0.8, 0.8) and (0.9, 0.9).

Remark 7. The identified set (𝜃1 ,𝜃0)(𝑠1, 𝑠0) was derived by finding all distributions 𝑃𝑠1 ,𝑠0 (𝑡, 𝑟, 𝑦) that are consistent with the data
given (𝑠1, 𝑠0). It thus represents a domain of consensus for the values of (𝜃1, 𝜃0) under additional assumptions restricting the set of
𝑃𝑠1 ,𝑠0 (𝑡, 𝑟, 𝑦) that are considered to be feasible. In other words, any sharp identified set obtained under further assumptions on the
statistical dependence of 𝑡, 𝑟, and 𝑦 will be a subset of (𝜃1 ,𝜃0)(𝑠1, 𝑠0).

Given that SARS-CoV-2 RT-PCR and rapid antigen swab tests rely on the same type of sample usually taken from the same
ocation (e.g. nasopharynx, nares or oropharynx), it may be plausible to maintain that the two tests have a tendency to wrongly
gree. We will use the assumption in the empirical application in Section 5. More examples can be found in the literature. Hadgu
1999) observes that the same assumption is credible for the ligase chain reaction (LCR) and culture tests for Chlamydia trachomatis
y the same reasoning. Valenstein (1990) indicates that when determining the performance of direct immunoassay swab tests for
roup A streptococci using a culture as a reference, the tendency to wrongly agree may hold for 𝑦 = 1 due to inadequately obtained
amples leading to false negatives. The same is suggested for 𝑦 = 0. Patients who are ill with viral pharyngitis, but incidentally carry
he bacteria elsewhere, may appear falsely positive on both tests. Vacek (1985) argues that tine and Mantoux tuberculin tests may
ave a tendency to wrongly agree for any 𝑦 as both rely on the antibody reaction to tuberculin.

.4. Imperfect knowledge of reference test characteristics

For simplicity of exposition, previously derived identified sets for (𝜃1, 𝜃0) were presented under the premise that (𝑠1, 𝑠0) are known
xactly. That assumption might be implausible depending on the setting. Researchers may instead prefer to maintain that they do
ot possess exact, but rather approximate knowledge of (𝑠1, 𝑠0). I thus relax Assumption 2 by supposing that we only have knowledge
f a set  that contains true sensitivity and specificity of the reference test.

ssumption 2A. Sensitivity and specificity of the reference test are contained in a known compact set  ⊂ [0, 1]2. All values
𝑠1, 𝑠0) ∈  satisfy 𝑠1 > 1 − 𝑠0.

Assumption 2A is a weaker form of Assumption 2, since it is implied by it. Similarly, jointly with Assumption 3, Assumption 2A
mplies that ∀(𝑠1, 𝑠0) ∈  ∶ 𝑃 (𝑟 = 1) ∈ (1 − 𝑠0, 𝑠1). If the condition fails, at least one of the two assumptions is refuted. Compactness
f  is not relevant for identification, but it is utilized in the inference procedure constructed in Section 4.

For an element (𝑠1, 𝑠0) ∈ , let the identified set (𝜃1 ,𝜃0)(𝑠1, 𝑠0) for (𝜃1, 𝜃0) be found using Proposition 1 or Proposition 2, depending
n which of the discussed assumptions the researcher is willing to maintain. Denote by (𝜃1 ,𝜃0)() the corresponding identified set
or (𝜃1, 𝜃0) when (𝑠1, 𝑠0) is known to be in . All values (𝜃1, 𝜃0) that are found in at least one set 𝐺 within a collection of sets
∈ {(𝜃1 ,𝜃0)(𝑠1, 𝑠0) ∶ (𝑠1, 𝑠0) ∈ } then constitute (𝜃1 ,𝜃0)(). In other words, the set (𝜃1 ,𝜃0)() contains all values of (𝜃1, 𝜃0) that are

onsistent with the observed data and at least one (𝑠1, 𝑠0) ∈ . We can formally define:

(𝜃1 ,𝜃0)() =
⋃

(𝑠1 ,𝑠0)∈
(𝜃1 ,𝜃0)(𝑠1, 𝑠0). (10)

orollary 1. Suppose that Assumption 2A holds. Let (𝜃1 ,𝜃0)(𝑠1, 𝑠0) be a sharp identified set for (𝜃1, 𝜃0) given a value (𝑠1, 𝑠0) as defined in

roposition 1, or Proposition 2. Then (𝜃1 ,𝜃0)() in (10) is a sharp identified set for (𝜃1, 𝜃0) if (𝑠1, 𝑠0) ∈ .

8 



F. Obradović


l

p
w
(
s

r
s
d
s
w

t
a
s
(

Journal of Econometrics 244 (2024) 105842 
Any set (𝜃1 ,𝜃0)(𝑠1, 𝑠0) contains only the values of (𝜃1, 𝜃0) that are consistent with the observed data and (𝑠1, 𝑠0). The union of sets
(𝜃1 ,𝜃0)(𝑠1, 𝑠0) over all possible (𝑠1, 𝑠0) ∈  then only contains the values of (𝜃1, 𝜃0) that are consistent with the observed data and at
east one (𝑠1, 𝑠0) ∈ . Hence, the identified set (𝜃1 ,𝜃0)() is the smallest possible under the maintained assumptions.

The set  may take different forms. Expected ones include finite sets, line segments or rectangles. In general, within (𝜃1 ,𝜃0)()
test performance measures 𝜃1 and 𝜃0 will no longer necessarily be linearly dependent. The set (𝜃1 ,𝜃0)() may not be a line segment
in [0, 1]2, but rather a union of line segments of positive and bounded slopes. Hence, it will not be rectangular. It is still possible
to demonstrate that 𝑟 is more precise than 𝑡. As in Remark 2, it is feasible for all (𝑠1, 𝑠0) ∈  and (𝜃1, 𝜃0) ∈ (𝜃1 ,𝜃0)() to have
(𝑠1, 𝑠0) > (𝜃1, 𝜃0) component-wise.

3. Bounding prevalence in screened populations

Sensitivity and specificity in the performance study population are often extrapolated to other populations and used to identify
different parameters of interest. Notable examples are prevalence in a population undergoing screening and predictive values. In
this section, I show how the specific structure of the identified set for (𝜃1, 𝜃0) helps reduce the width of bounds on prevalence when
test 𝑡 is used for screening. Bounds on predictive values are discussed in Appendix A.

Population disease prevalence is both a research- and policy-relevant parameter. Suppose that we are interested in learning
the true prevalence in a certain population that is being screened. Identification of prevalence based on results of an imperfect
screening test is a standard epidemiological problem. Assume that each individual is tested exactly once using only the test 𝑡.
Maintain that 𝑟 is not used for screening. Depending on the setting, 𝑡 may be preferred over 𝑟 for the purpose due to resource
constraints, turnaround time or invasiveness, as explained in Remark 1. A prominent recent example was the use of antigen testing
in university and institutional settings to monitor prevalence during the COVID-19 pandemic.

To make the distinction between the screened and performance study populations explicit, let 𝑄(𝑡, 𝑦) denote the probability
distribution which generates the data in the screened population. Unlike in the performance study, 𝑟 is not available, making the
use of 𝑄(𝑡, 𝑟, 𝑦) superfluous. The data alone identify only 𝑄(𝑡 = 1). As before, 𝑦 is not observed, and we are interested in learning
𝑄(𝑦 = 1). Let (𝜏1, 𝜏0) = (𝑄(𝑡 = 1|𝑦 = 1), 𝑄(𝑡 = 0|𝑦 = 0)) be the sensitivity and specificity of 𝑡 among the screened individuals. We can
then write the following identities for the two populations:

𝑄(𝑡 = 1) = 𝜏1𝑄(𝑦 = 1) + (1 − 𝜏0)𝑄(𝑦 = 0)

𝑃 (𝑡 = 1) = 𝜃1𝑃𝑠1 ,𝑠0 (𝑦 = 1) + (1 − 𝜃0)𝑃𝑠1 ,𝑠0 (𝑦 = 0).
(11)

Remark 8. It is important to emphasize that 𝑄(𝑦 = 1) may differ from 𝑃𝑠1 ,𝑠0 (𝑦 = 1) in the performance study population. In the
performance study, one can point identify or bound 𝑃𝑠1 ,𝑠0 (𝑦 = 1) using 𝑃 (𝑟 = 1) and knowledge of (𝑠1, 𝑠0) or  as shown in (3). In
the context of this section, this is not possible since 𝑟 is not used for screening, making 𝑄(𝑟 = 1) unidentified.

Exact knowledge of (𝜏1, 𝜏0) identifies the prevalence (Gart and Buck, 1966; Diggle, 2011). In the population of interest it directly
follows from (11):

𝑄(𝑦 = 1) =
𝑄(𝑡 = 1) + 𝜏0 − 1

𝜏1 + 𝜏0 − 1
. (12)

Walter and Irwig (1988), and Greenland (1996) explain that knowledge of (𝜏1, 𝜏0) is commonly extrapolated from test
erformance studies (see also Gastwirth, 1987). That is, researchers maintain the extrapolation assumption: (𝜏1, 𝜏0) = (𝜃1, 𝜃0),
here (𝜃1, 𝜃0) are assumed to be identified in a performance study. I follow this practice and generalize (12) to the case when
𝜏1, 𝜏0) = (𝜃1, 𝜃0), but (𝜃1, 𝜃0) are partially identified. Denote by (𝜃1 ,𝜃0)() the identified set for (𝜃1, 𝜃0) obtained in a performance
tudy.  can be a singleton, as when (𝑠1, 𝑠0) are assumed to be known, in which case I write (𝜃1 ,𝜃0)(𝑠1, 𝑠0).

Assumption 4 (Test Performance Extrapolation). (𝜏1, 𝜏0) = (𝜃1, 𝜃0).

The assumption maintains that test performance is identical in the performance study and the screened populations. It does not
equire (𝜃1, 𝜃0) to be known exactly, and it implies that (𝜏1, 𝜏0) ∈ (𝜃1 ,𝜃0)(). While Walter and Irwig (1988) state that sensitivity and
pecificity may readily extrapolate to other populations in many cases, one should be aware that credibility of Assumption 4 critically
epends on the details of the empirical setting. One notable potential threat to its validity is variability of test performance across
ubpopulations, otherwise known as spectrum effects. For example, it is known that test sensitivity may vary across subpopulations
ith different illness severity.

When spectrum effects exist and the two populations differ in terms of relevant subpopulation proportions, Willis (2008) argues
hat (𝜃1, 𝜃0) = (𝜏1, 𝜏0) may be implausible. To see this, observe that in this case (𝜃1, 𝜃0) and (𝜏1, 𝜏0) are weighted averages of sensitivity
nd specificity across relevant subpopulations, but with different weights. However, if test performance is known for all relevant
ubpopulations, one could maintain Assumption 4 and identify prevalence at the subpopulation level using arguments that follow
see also Mulherin and Miller, 2002).
9 
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Proposition 3. Suppose that Assumption 4 holds and the population is screened only using 𝑡. Let (𝜃1 ,𝜃0)(𝑠1, 𝑠0) be a known sharp identified
et from Proposition 1 or Proposition 2. Denote by 𝜃𝐿𝑗 and 𝜃𝑈𝑗 the smallest and largest values of 𝜃𝑗 in (𝜃1 ,𝜃0)(𝑠1, 𝑠0). The sharp bounds on
revalence 𝑄(𝑦 = 1) are:

𝑄(𝑦 = 1) ∈ 𝛱𝑠1 ,𝑠0 ∶=

[

min

{

𝑄(𝑡 = 1) + 𝜃𝐿0 − 1

𝜃𝐿1 + 𝜃𝐿0 − 1
,
𝑄(𝑡 = 1) + 𝜃𝑈0 − 1

𝜃𝑈1 + 𝜃𝑈0 − 1

}

,

max

{

𝑄(𝑡 = 1) + 𝜃𝐿0 − 1

𝜃𝐿1 + 𝜃𝐿0 − 1
,
𝑄(𝑡 = 1) + 𝜃𝑈0 − 1

𝜃𝑈1 + 𝜃𝑈0 − 1

} ]

∩ [0, 1]

(13)

when ∀(𝜃1, 𝜃0) ∈ (𝜃1 ,𝜃0)(𝑠1, 𝑠0) ∶ 𝜃1 ≠ 1 − 𝜃0, and 𝑄(𝑦 = 1) ∈ [0, 1] otherwise.

Remark 9. The proof of Proposition 3 remains valid if we replace Assumption 4 with a weaker condition (𝜏1, 𝜏0) ∈ (𝜃1 ,𝜃0)(𝑠1, 𝑠0).
The benefits of doing so are primarily technical, as it difficult to think of settings in which the weaker condition is plausible and
Assumption 4 is not.

Proposition 3 extends the identity (12) to the case when (𝜃1, 𝜃0) extrapolate to 𝑄(𝑡, 𝑦). Note that it maintains that (𝑠1, 𝑠0) are
known exactly in the performance study. Corollary 2 generalizes the results to the case when (𝑠1, 𝑠0) are known to lie in . The
resulting bounds on the screened population prevalence 𝑄(𝑦 = 1) are sharp in the absence of additional data, namely results of other
tests such as 𝑟.

Whenever there exist (𝜃1, 𝜃0) ∈ (𝜃1 ,𝜃0)(𝑠1, 𝑠0) ∶ 𝜃1 + 𝜃0 = 1, prevalence is unidentified as 𝑡 may not be informative of 𝑦. Such tests
are not useful for screening purposes. When 𝑡 is informative of 𝑦, that is ∀(𝜃1, 𝜃0) ∈ (𝜃1 ,𝜃0)(𝑠1, 𝑠0) ∶ 𝜃1 ≠ 1 − 𝜃0, the importance of
the linear structure of (𝜃1 ,𝜃0)(𝑠1, 𝑠0) for bounding 𝑄(𝑦 = 1) becomes apparent. Identifying power of the structure can be substantial
as highlighted by Remark 10. For certain 𝑄(𝑡, 𝑦), resulting bounds may even point identify 𝑄(𝑦 = 1) using data only on 𝑡, despite
(𝜃1, 𝜃0) being partially identified.

It is important to highlight that Assumption 4 is refutable. If 𝑡 is informative of 𝑦, then it is possible that 𝛱𝑠1 ,𝑠0 = ∅. By (12), that
happens if all assumed values (𝜏1, 𝜏0) consistent with the assumption (𝜏1, 𝜏0) = (𝜃1, 𝜃0) ∈ (𝜃1 ,𝜃0)(𝑠1, 𝑠0) result in 𝑄(𝑦 = 1) ∉ [0, 1]. This

ould contradict the definition of 𝑄(𝑦 = 1), implying that (𝜏1, 𝜏0) ≠ (𝜃1, 𝜃0).

emark 10. Proof of Proposition 3 reveals that when (𝑠1, 𝑠0) are known, 𝑄(𝑦 = 1) is point identified if 𝑄(𝑡 = 1) = 𝑃 (𝑡 = 1). One
an intuitively see this from the fact that 𝑄(𝑡 = 1) = 𝑃 (𝑡 = 1), (𝜏1, 𝜏0) = (𝜃1, 𝜃0) and (11) jointly imply that 𝑃𝑠1 ,𝑠0 (𝑦 = 1) = 𝑄(𝑦 = 1).
ince 𝑃𝑠1 ,𝑠0 (𝑦 = 1) is point-identified when (𝑠1, 𝑠0) are known, then 𝑄(𝑦 = 1) is too.

Let 𝜃𝑗 (𝑠1, 𝑠0) = {𝜃𝑗 ∶ (𝜃1, 𝜃0) ∈ (𝜃1 ,𝜃0)(𝑠1, 𝑠0)} denote the individual bounds on 𝜃𝑗 for 𝑗 = 0, 1. The sets 𝜃1 (𝑠1, 𝑠0) and 𝜃0 (𝑠1, 𝑠0)
re also referred to as projection bounds on 𝜃1 and 𝜃0.

emark 11. Let ∀(𝜃1, 𝜃0) ∈ (𝜃1 ,𝜃0)(𝑠1, 𝑠0) ∶ 𝜃1 ≠ 1 − 𝜃0 so that 𝑡 is informative for screening. If we were to disregard the linear
tructure of the sharp identified set by supposing that it is a rectangle 𝜃1 (𝑠1, 𝑠0) × 𝜃0 (𝑠1, 𝑠0), then the bounds on the prevalence
ould be:

𝑄(𝑦 = 1) ∈ 𝛱̄𝑠1 ,𝑠0 ∶=

[

𝑄(𝑡 = 1) + 𝜃𝐿0 − 1

𝜃𝑈1 + 𝜃𝐿0 − 1
,
𝑄(𝑡 = 1) + 𝜃𝑈0 − 1

𝜃𝐿1 + 𝜃𝑈0 − 1

]

∩ [0, 1]. (14)

It is direct that 𝛱𝑠1 ,𝑠0 ⊂ 𝛱̄𝑠1 ,𝑠0 whenever (𝜃1 ,𝜃0)(𝑠1, 𝑠0) is not a singleton, so that 𝜃𝑈𝑗 > 𝜃𝐿𝑗 for 𝑗 ∈ {0, 1}. Disregarding the linear
structure of the identified set for (𝜃1, 𝜃0) yields strictly wider bounds on prevalence. For any 𝑄(𝑡 = 1), 𝛱̄𝑠1 ,𝑠0 is an infinite set. If
𝑃 (𝑡 = 1) = 𝑄(𝑡 = 1), 𝛱𝑠1 ,𝑠0 is a singleton.

Bounds in (14) would follow from methods that do not establish the linear structure of (𝜃1 ,𝜃0)(𝑠1, 𝑠0), such as Thibodeau (1981)
and Emerson et al. (2018). Remark 11 shows that using such methods to bound test performance will yield wider bounds on
prevalence in a population screened by an informative 𝑡. Moreover, depending on 𝑃 (𝑡, 𝑟) and 𝑄(𝑡) the difference in width can be
extreme, since 𝛱𝑠1 ,𝑠0 can be a singleton, while 𝛱̄𝑠1 ,𝑠0 is always an infinite set. Section 5 illustrates how relying on rectangular
identified sets affects the width of prevalence bounds using empirical examples. It compares prevalence bound widths implied by
estimated identified sets for (𝜃1, 𝜃0) constructed using Thibodeau (1981), Emerson et al. (2018), and the method described here, for
hypothetical screened populations with different 𝑄(𝑡 = 1).

Corollary 2. Suppose that Assumption 4 holds and the population is screened only using 𝑡. Let (𝜃1 ,𝜃0)() =
⋃

(𝑠1 ,𝑠0)∈ (𝜃1 ,𝜃0)(𝑠1, 𝑠0), where
(𝜃1 ,𝜃0)(𝑠1, 𝑠0) are known sharp identified sets from Proposition 1 or Proposition 2. The sharp bounds on prevalence 𝑄(𝑦 = 1) are:

𝑄(𝑦 = 1) ∈ 𝛱 ∶=
⋃

(𝑠1 ,𝑠0)∈
𝛱𝑠1 ,𝑠0 (15)

when ∀(𝜃1, 𝜃0) ∈ (𝜃1 ,𝜃0)() ∶ 𝜃1 ≠ 1 − 𝜃0, and 𝑄(𝑦 = 1) ∈ [0, 1] otherwise.

Corollary 2 generalizes Proposition 3 to the case when (𝑠1, 𝑠0) are not known exactly. If the shape of (𝜃1 ,𝜃0)() was disregarded
by assuming that the identified set was a rectangle, bounds 𝛱̄ analogous to the ones in (14) can still be formed, and it would hold

̄
that 𝛱 ⊂ 𝛱 .
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Throughout this section we have assumed that screening is performed once in the population. If screening is done repeatedly,
time series of prevalence bounds can be constructed. When there is selection into testing, bounds on prevalence by Stoye (2022)
ay be used, for which the bounds on (𝜃1, 𝜃0) derived in Section 2 are natural inputs.

4. Estimation and inference

Identified sets in Section 2 can be found when 𝑃 (𝑡, 𝑟) is known. In practice, researchers must use sample data to estimate
the identified set and conduct inference. This section demonstrates consistent estimation of the identified set and construction
of confidence sets for the points in the identified set that are uniformly consistent in level over a large family of permissible
distributions.

Let 𝑊𝑖 = (𝑡𝑖, 𝑟𝑖) ∈ {0, 1}2 for 𝑖 = 1,… , 𝑛 constitute the observed data of 𝑛 i.i.d observations from the distribution 𝑃 (𝑡, 𝑟) ∈ 𝐏,
where 𝐏 is a family of categorical distributions with 4 categories. Let (𝜃1 ,𝜃0)(𝑠1, 𝑠0) denote an arbitrary identified set for (𝜃1, 𝜃0) given
𝑠1, 𝑠0) from any of the propositions above, and 𝜃𝑗 (𝑠1, 𝑠0) the corresponding identified set for 𝜃𝑗 with 𝑗 = 0, 1. Replacing population

parameters with their consistent estimators in closed form expressions for 𝜃𝑗 (𝑠1, 𝑠0) and (𝜃1 ,𝜃0)(𝑠1, 𝑠0) yields the consistent plug-in
estimator of the identified sets (Manski and Pepper, 2000; Tamer, 2010).

Let 1{⋅} denote the indicator function. Suppose first that (𝑠1, 𝑠0) are known. 𝑃 (𝑡 = 𝑗, 𝑟 = 𝑘) =
∑𝑛

𝑖=1 1{𝑡𝑖=𝑗,𝑟𝑖=𝑘}
𝑛 are consistent

estimators of 𝑃 (𝑡 = 𝑗, 𝑟 = 𝑘) for all (𝑗, 𝑘) ∈ {0, 1}2. Combining 𝑃 (𝑡 = 𝑗, 𝑟 = 𝑘) with the knowledge of (𝑠1, 𝑠0) yields 𝑃𝑠1 ,𝑠0 (𝑟 = 𝑘, 𝑦 = 𝑙)
or every 𝑘, 𝑙 ∈ {0, 1}2. The plug-in estimator ̂𝜃𝑗 (𝑠1, 𝑠0) for the identified set of a single parameter 𝜃𝑗 follows immediately by inputting
̂ (𝑡 = 𝑗, 𝑟 = 𝑘) and 𝑃𝑠1 ,𝑠0 (𝑟 = 𝑘, 𝑦 = 𝑙) into the bounds in Proposition 1, or Proposition 2. Consistent estimator ̂(𝜃1 ,𝜃0)(𝑠1, 𝑠0) of the

joint identified set for (𝜃1, 𝜃0) follows from (6).
In the case when (𝑠1, 𝑠0) are only known to be bounded by some compact set , one can obtain the consistent estimator

̂(𝜃1 ,𝜃0)() =
⋃

(𝑠1 ,𝑠0)∈ ̂(𝜃1 ,𝜃0)(𝑠1, 𝑠0). This is done by finding a union of ̂(𝜃1 ,𝜃0)(𝑠1, 𝑠0) over a fine grid of (𝑠1, 𝑠0) covering . The
procedure requires two nested grid-search algorithms, and the level of coarseness of the two grids can impact computation time.

FDA Statistical Guidance on Reporting Results Evaluating Diagnostic Tests requires all diagnostic performance studies to report
confidence intervals for 𝜃1 and 𝜃0. I show how one can use the method for inference based on moment inequalities from Romano
et al. (2014) to form confidence sets that cover the true parameters with at least some pre-specified probability 1 − 𝛼 and that are
uniformly consistent over a large family of permissible distributions 𝐏.

Let 𝐶𝑛 be the confidence set of interest and let Θ(𝑃 ) =
⋃

(𝑠1 ,𝑠0)∈

(

(𝜃1 ,𝜃0)(𝑠1, 𝑠0) × {(𝑠1, 𝑠0)}
)

be an identification region for
𝜃 = (𝜃1, 𝜃0, 𝑠1, 𝑠0) that depends on 𝑃 ∈ 𝐏 through (𝜃1 ,𝜃0)(𝑠1, 𝑠0), and where  can be a singleton.12 Note that 𝜃 includes reference
test performance (𝑠1, 𝑠0). This is done to facilitate convenient definition of moment inequalities that represent the identified set of
interest, regardless of whether (𝑠1, 𝑠0) are known exactly or not. The confidence set 𝐶𝑛 should satisfy:

lim inf
𝑛←←←←←←←←←→∞

inf
𝑃∈𝐏

inf
𝜃∈Θ(𝑃 )

𝑃 (𝜃 ∈ 𝐶𝑛) ≥ (1 − 𝛼). (16)

Canay and Shaikh (2017) provide an overview of the recent advances in inference based on moment inequalities that are focused
on finding 𝐶𝑛 in partially identified models. They underline the importance of uniform consistency of 𝐶𝑛 in level in these settings.
If it fails, it may be possible to construct a distribution of the data 𝑃 (𝑡, 𝑟) such that for any sample size finite-sample coverage
probability of some points in the identified set is arbitrarily low. In that sense, inference based on confidence intervals that are
consistent only pointwise may be severely misleading in finite samples. To exploit existing inference methods based on moment
inequalities to construct 𝐶𝑛, the identified set Θ(𝑃 ) must be equivalent to some set Θ̃(𝑃 ):

Θ̃(𝑃 ) = {𝜃 ∈ [0, 1]2 ×  ∶ 𝐸𝑃
(

𝑚𝑗 (𝑊𝑖, 𝜃)
)

≤ 0 for 𝑗 ∈ 𝐽1 , 𝐸𝑃
(

𝑚𝑗 (𝑊𝑖, 𝜃)
)

= 0 for 𝑗 ∈ 𝐽2} (17)

where 𝑚𝑗 (𝑊𝑖, 𝜃) for 𝑗 ∈ 𝐽1 ∪ 𝐽2 are the components of a random function 𝑚 ∶ {0, 1}2 × [0, 1]2 ×  ←←←←←←←←←→ R𝑘 such that |𝐽1| + |𝐽2| = 𝑘.
Construction of the confidence set for points in the identified set Θ̃(𝑃 ) is done by imposing a fine grid over the parameter space
[0, 1]2 ×  for 𝜃 and performing test inversion.

Identified sets derived in the previous section are representable by (17). Focus on the bounds for 𝜃1 in Proposition 2 when the
tests have the tendency to wrongly agree for 𝑦 = 1 for intuition. Observe that there are four values that are all lower bounds on 𝜃1
given (𝑠1, 𝑠0). Similarly there are four values that are all upper bounds. One of the lower bounds is trivial: 𝜃1 ≥ 0. One upper bound
is 𝜃1 ≤

( 𝑃𝑠1 ,𝑠0 (𝑟=0,𝑦=1)
2 + 𝑃𝑠1 ,𝑠0 (𝑟 = 1, 𝑦 = 1)

)

1
𝑃𝑠1 ,𝑠0 (𝑦=1)

= 1+𝑠1
2 . There are no parameters pertaining to the population distribution in

he bound. This is a restriction on the parameter space, under which 𝜃 ∈
⋃

(𝑠1 ,𝑠0)∈ [0,
1+𝑠1
2 ] × [0, 1] × {(𝑠1, 𝑠0)}. With the appropriate

arameter space, there are six relevant values for the bounds on 𝜃1 that depend on parameters of the population distribution, three
or the upper and three for the lower bound. Hence, we can represent the bounds on 𝜃1 using six moment inequalities.

Proposition 2 implies that we only need to include one additional moment equality to represent the joint identification region
̄(𝜃1 ,𝜃0)(𝑠1, 𝑠0) for (𝜃1, 𝜃0). Then the moment function 𝑚̄1(𝑊𝑖, 𝜃) representing the identified set Θ(𝑃 ) =

⋃

(𝑠1 ,𝑠0)∈

(

̄(𝜃1 ,𝜃0)(𝑠1, 𝑠0) ×

(𝑠1, 𝑠0)}
)

will have 𝑘 = 7, where 𝐽1 = {1,… , 6} and 𝐽2 = {7}.

12 More precisely, we are interested in 𝐶𝑛 for the points in (𝜃1 ,𝜃0 )() =
⋃

(𝑠1 ,𝑠0 )∈
(𝜃1 ,𝜃0 )(𝑠1 , 𝑠0) = {(𝜃1 , 𝜃0) ∶ 𝜃 ∈ Θ(𝑃 )}. When 𝑃 (𝑡, 𝑟) is known, whether one
efines the identified set as (𝜃1 ,𝜃0 )() or Θ(𝑃 ) is inconsequential.

11 
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Proposition 4. Assume that the index and reference tests have a tendency to wrongly agree only for 𝑦 = 1. Let the moment function 𝑚̄1

e:

𝑚̄1(𝑊𝑖, 𝜃) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑚̄1
1(𝑊𝑖, 𝜃)

𝑚̄1
2(𝑊𝑖, 𝜃)

𝑚̄1
3(𝑊𝑖, 𝜃)

𝑚̄1
4(𝑊𝑖, 𝜃)

𝑚̄1
5(𝑊𝑖, 𝜃)

𝑚̄1
6(𝑊𝑖, 𝜃)

𝑚̄1
7(𝑊𝑖, 𝜃)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(−𝜃1 + 𝑠1)
𝑟𝑖−1+𝑠0
𝑠1−1+𝑠0

+ (𝑡𝑖 − 1)𝑟𝑖

(−𝜃1 + 1 − 𝑠1)
𝑟𝑖−1+𝑠0
𝑠1−1+𝑠0

+ (𝑟𝑖 − 1)(1 − 𝑡𝑖)

(−𝜃1 + 1) 𝑟𝑖−1+𝑠0𝑠1−1+𝑠0
+ (𝑡𝑖 − 1)

𝜃1
𝑟𝑖−1+𝑠0
𝑠1−1+𝑠0

− 𝑡𝑖

(𝜃1 − 𝑠1)
𝑟𝑖−1+𝑠0
𝑠1−1+𝑠0

− 𝑡𝑖(1 − 𝑟𝑖)
(

𝜃1 +
−1+𝑠1

2

)

𝑟𝑖−1+𝑠0
𝑠1−1+𝑠0

− 𝑡𝑖𝑟𝑖

(𝜃0 − 1)(1 − 𝑟𝑖−1+𝑠0
𝑠1−1+𝑠0

) − 𝜃1
𝑟𝑖−1+𝑠0
𝑠1−1+𝑠0

+ 𝑡𝑖

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (18)

oment inequalities and equalities defined by 𝑚̄1 for 𝐽1 = {1,… , 6} and 𝐽2 = {7} represent the joint identification region Θ(𝑃 ) =

(𝑠1 ,𝑠0)∈

(

̄(𝜃1 ,𝜃0)(𝑠1, 𝑠0)×{(𝑠1, 𝑠0)}
)

for ̄(𝜃1 ,𝜃0)(𝑠1, 𝑠0) defined in Proposition 2 for 𝑦 = 1. For each 𝜃 ∈
⋃

(𝑠1 ,𝑠0)∈ [0,
1+𝑠1
2 ]×[0, 1]×{(𝑠1, 𝑠0)}

such that 𝐸𝑃
(

𝑚̄1
𝑗 (𝑊𝑖, 𝜃)

)

≤ 0 for j=1,…,6 and 𝐸𝑃
(

𝑚̄1
7(𝑊𝑖, 𝜃)

)

= 0, it must be that 𝜃 ∈ Θ(𝑃 ). Conversely, if 𝜃 ∈ Θ(𝑃 ), then
𝐸𝑃

(

𝑚̄1
𝑗 (𝑊𝑖, 𝜃)

)

≤ 0 for j=1,…,6 and 𝐸𝑃
(

𝑚̄1
7(𝑊𝑖, 𝜃)

)

= 0.

Similarly, it is possible to define moment inequality functions that represent remaining identified sets in Propositions 1 and 2.
They are found in Eqs. (B.1), (B.3), and (B.4) in Appendix B.

Romano et al. (2014), Theorem 3.1 provides sufficient conditions for uniform consistency of confidence sets over a large family
of distributions. Assumption 5 defines a family 𝐏 to which the conclusions of Theorem 3.1 apply. This is demonstrated by Theorem 1
below.

Assumption 5. There exists a number 𝜀 > 0 such that 𝑃 (𝑡 = 𝑗, 𝑟 = 𝑘) ≥ 𝜀 for all (𝑗, 𝑘) ∈ {0, 1}2 and any 𝑃 (𝑡, 𝑟) ∈ 𝐏.

The assumption restricts 𝐏 to distributions 𝑃 (𝑡, 𝑟) such that all outcomes (𝑡, 𝑟) ∈ {0, 1}2 have probability that is bounded away from
zero. It serves a technical purpose, ensuring that the uniform integrability condition required by Romano et al. (2014), Theorem
3.1 holds. The assumption is easily interpretable and it appears reasonable in the analyzed data, as discussed in Section 5.

Theorem 1. Suppose that Assumptions 1, 2A, 3, and 5 hold. Then for any component 𝑚𝑗 (𝑊𝑖, 𝜃) in (18), (B.1), (B.3), and (B.4):

1. 𝑉 𝑎𝑟𝑃 (𝑚𝑗 (𝑊𝑖, 𝜃)) > 0 and for all 𝑃 ∈ 𝐏 and 𝜃 ∈ [0, 1]2 × ;

2. lim sup𝜆←←←←←←←←←→∞ sup𝑃∈𝐏 sup𝜃∈Θ(𝑃 ) 𝐸𝑃

[

(

𝑚𝑗 (𝑊𝑖 ,𝜃)−𝜇𝑗 (𝜃,𝑃 )
𝜎𝑗 (𝜃,𝑃 )

)2
1

{

|

|

|

|

𝑚𝑗 (𝑊𝑖 ,𝜃)−𝜇𝑗 (𝜃,𝑃 )
𝜎𝑗 (𝜃,𝑃 )

|

|

|

|

> 𝜆
}

]

= 0;

here 𝜇𝑗 (𝜃, 𝑃 ) = 𝐸𝑃 (𝑚𝑗 (𝑊𝑖, 𝜃)) and 𝜎𝑗 (𝜃, 𝑃 ) = 𝑉 𝑎𝑟𝑃 (𝑚𝑗 (𝑊𝑖, 𝜃)).

Theorem 1 enables us to use the method from Romano et al. (2014) to construct confidence sets 𝐶𝑛 for points (𝜃1, 𝜃0) in the
dentified sets defined by Propositions 1 and 2 that satisfy (16) when the relevant family of population distributions conforms to
ssumption 5.

emark 12. In certain cases researchers may estimate (𝑠1, 𝑠0) based on an independent sample of size 𝑚, rather than assume them
o be known. For example, this happens if one has access to a sample from an independent validation study identifying performance
f 𝑟. It is possible to account for statistical imprecision of both samples using Šidák’s correction for independent tests (Lehmann
nd Romano, 2022, Chapter 9.1.2). Let 𝛼𝑆 = 1 − (1 − 𝛼)

1
2 . One can construct an asymptotic confidence set for (𝑠1, 𝑠0) at the 1 − 𝛼𝑆

confidence level, and treat it as  in the inference procedure. Then, the confidence set 𝐶𝑛 at the significance level 𝛼𝑆 ensures at
least 1− 𝛼 asymptotic coverage of (𝜃1, 𝜃0) as 𝑛, 𝑚 ←←←←←←←←←→ ∞. For example, if 𝛼 = 5%, then 𝛼𝑆 = 2.53% which modestly improves upon the
Bonferroni correction.

5. Application - Abbott BinaxNOW COVID-19 antigen test

In this section, I apply the developed method to existing study data to provide confidence and estimated identified sets for (𝜃1, 𝜃0)
of the rapid antigen COVID-19 test with the currently highest market share in the United States - Abbott BinaxNOW COVID-19 Ag2
CARD test.

Template for Developers of Antigen Tests required by the FDA for EUA mandates that the reference for all COVID-19 antigen
test studies must be an approved RT-PCR test.13 However, Arevalo-Rodriguez et al. (2020), Kucirka et al. (2020), Dramé et al.
(2020), Hernández-Huerta et al. (2020), and Kanji et al. (2021) explain that these tests are imperfectly sensitive. Using them

13 Link: https://www.fda.gov/media/137907/download (Last accessed: 12/25/2022).
12 
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Fig. 1. Assumed  = {(0.9, 1)}. Sx denotes symptomatic, and ASx asymptomatic individuals. First row depicts estimates, and 95% confidence sets for ‘‘apparent’’
measures and points in the identified set for (𝜃1 , 𝜃0). Second row compares estimated identified sets with estimates by comparable methods. Bottom row compares
widths of prevalence bounds implied by the estimates.

as a reference yields ‘‘apparent’’ and generally not true sensitivity and specificity. Interpreting the results as measures of true
performance may be severely misleading. Fitzpatrick et al. (2021) emphasize that the false negative rate of the BinaxNOW test may
be substantially understated by the reported ‘‘apparent’’ analog due to imperfect reference tests. They highlight that ‘‘apparent’’
measures can unjustifiably lead the users to believe that the test must have high sensitivity, even when this is not true.

To verify the claim, I revisit the test performance study data from the submitted EUA documentation,14 as well data from an
independent study by Shah et al. (2021). I compare the results with the corresponding ‘‘apparent’’ estimates from the original
documentation and the instructions for use pamphlet. I also use the data to compare the developed method with existing bounds
by Thibodeau (1981) and Emerson et al. (2018), henceforth referred to as comparable methods.

By established notation, 𝑡 is the antigen test, 𝑟 is the RT-PCR test and 𝑦 determines whether the person truly has COVID-19. To
construct the confidence sets, I implement the test from Romano et al. (2014) denoted by 𝜙𝑅𝑆𝑊 2

𝑛 in Bai et al. (2021). The test relies

on the maximum statistic 𝑇𝑛 = max
{

max1≤𝑗≤𝑘
√

𝑛𝑚̄𝑗
𝑆𝑗

, 0
}

, where 𝑚̄𝑗 = 1
𝑛
∑𝑛

𝑖=1 𝑚𝑗 (𝑊𝑖, 𝜃) and 𝑆2
𝑗 = 1

𝑛
∑𝑛

𝑖=1(𝑚𝑗 (𝑊𝑖, 𝜃) − 𝑚̄𝑗 )2 for a value
𝜃 and components of the appropriate moment function 𝑚𝑗 (𝑊𝑖, 𝜃) 𝑗 = 1,… , 𝑘. The testing procedure has two steps: (1) Construction
of confidence regions for the moments; (2) Formation of a critical value incorporating information on which moment inequalities
are ‘‘negative’’. I perform test inversion over a fine grid of 105 points for the relevant parameter space for (𝜃1, 𝜃0), and additionally
over 10 points over , where applicable. Following the original paper, I use 500 bootstrap samples to find the critical values and
set 𝛽 = 𝛼∕10. The results do not change significantly with alternative values 𝛽 = 𝛼∕5 and 𝛽 = 𝛼∕20.

14 Link: https://www.fda.gov/media/141570/download (Last accessed: 12/25/2022).
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Table 1
Study data.

Data 𝑁 (𝑡𝑖 , 𝑟𝑖)

(1, 1) (0, 1) (1, 0) (0, 0)

EUA Sx 460 99 18 5 338
Shah et al. (2021) Sx 929 199 44 2 684
Shah et al. (2021) ASx 877 33 15 5 824

Note: Number of outcomes (𝑡𝑖 , 𝑟𝑖) in analyzed studies. Sx denotes the symptomatic,
and ASx the asymptomatic individuals.

5.1. Identification assumptions

Use of comparable and bounds developed in the paper requires a credible set of values (𝑠1, 𝑠0) ∈  for the reference RT-PCR test. I
maintain that 𝑠0 = 1 following Kucirka et al. (2020) who do the same, citing perfect analytical specificity.15 The same assumption has
been used in other existing work, such as Manski (2020), Manski and Molinari (2021) Kanji et al. (2021), Ziegler (2021), and Stoye
(2022).

In the absence of a perfect gold standard, a conventional diagnostic test performance study cannot identify sensitivity 𝑠1 of the
RT-PCR tests. Some studies rely on a different set of assumptions to identify the parameter of interest. Kanji et al. (2021) provide
a discordant result analysis of the RT-PCR test used for frontline testing of symptomatic individuals. The authors define discordant
results as initially negative RT-PCR findings followed by a positive test result within the incubation period. The negative samples
were retested by three alternative RT-PCR assays targeting different genes. If at least two alternative assays yielded positive results,
the initial result was considered to be a false negative finding. Assuming perfect specificities of each assay, and perfect sensitivity of
the combined testing procedure, they estimate the sensitivity of the used RT-PCR test at 90.3%. Perfect specificity is maintained based
on perfect analytical specificity. Arevalo-Rodriguez et al. (2020) use data from published studies to estimate sensitivity, defining
false negatives as patients who were symptomatic and negative, but subsequently positive on an RT-PCR test within the incubation
period. It is implicitly maintained that all initial results must have been false negatives. Three estimates are based on data from the
United States. Sensitivity of 90% is the only estimate which is not considered to be at high risk of bias according to the QUADAS-2
tool (Whiting et al., 2011). Following the two references, I assume that 𝑠1 = 0.9. One should note that assumed (𝑠1, 𝑠0) are a critical
identifying assumption which directly affect the obtained estimates. Appendix C thus discusses robustness of findings to different
assumed values of 𝑠1.

Since the antigen and RT-PCR test rely on the same type of sample, I maintain that they have a tendency to wrongly agree for
𝑦 = 1. Since it is assumed that 𝑠0 = 1, the tendency to wrongly agree for 𝑦 = 0 has no identifying power, as explained by Remark 6.
It is thus not maintained.

5.2. Data and results

EUA documentation and the instructions for use outline the initial performance study. The estimates were obtained on a sample
of 460 participants tested within 7 days of symptom onset. Shah et al. (2021) perform the same analysis on an independent sample of
2110 individuals enrolled at a community testing site. This includes 1188 symptomatic individuals, of which 929 were tested within
7 days of symptom onset. I omit symptomatic individuals tested more than 7 days after initial symptoms for comparability with the
EUA study. I separately analyze the performance on 877 asymptomatic participants to provide plausible estimates of performance
in the absence of symptoms. The data are summarized in Table 1. In all three samples, estimates of joint probabilities 𝑃 (𝑡 = 𝑗, 𝑟 = 𝑘)
for (𝑟, 𝑘) ∈ {0, 1}2 are bounded away from zero. That the distributions which have generated the data lie in a family of distributions
satisfying Assumption 5 is reasonable.

Panels (a), (b), and (c) of Fig. 1 represent the estimated ‘‘apparent’’ operating characteristics and joint identified sets for (𝜃1, 𝜃0),
s well as corresponding 95% confidence sets. The joint confidence set for apparent measures is the projection Clopper–Pearson
xact confidence set. The areas of the two confidence sets are similar. Table 2 show the estimates of projected individual bounds
n sensitivity and specificity. The bounds are revealing.

The original EUA was granted based on interim results of the study in which the test exhibited estimated ‘‘apparent’’ sensitivity
nd specificity of (91.7%, 100%). Subsequent results of the full study yielded ‘‘apparent’’ operating characteristics estimates of
84.6%, 98.5%). Public statements and media releases erroneously cite all of the estimates as estimates of true performance.16 Both
he interim and final estimates are reported on the instructions-for-use pamphlet accompanying the test. First two rows of Table 2
how that both estimates of ‘‘apparent’’ sensitivity lie strictly above the estimated projected upper bound for true sensitivity in all
amples. Hence, sensitivity may be overstated by the ‘‘apparent’’ analog, as Fitzpatrick et al. (2021) suggest. The fifth and sixth
ows demonstrate that final estimates of ‘‘apparent’’ specificity are at the estimated projected lower bounds for true specificity. True
pecificity may be understated.

15 Specificity on contrived laboratory samples containing other pathogens, but not SARS-CoV-2.
16 For example: https://www.bloomberg.com/press-releases/2020-12-16/abbott-s-binaxnow-covid-19-rapid-test-receives-fda-emergency-use-authorization-for-

irst-virtually-guided-at-home-rapid-test-u.
14 

https://www.bloomberg.com/press-releases/2020-12-16/abbott-s-binaxnow-covid-19-rapid-test-receives-fda-emergency-use-authorization-for-first-virtually-guided-at-home-rapid-test-u
https://www.bloomberg.com/press-releases/2020-12-16/abbott-s-binaxnow-covid-19-rapid-test-receives-fda-emergency-use-authorization-for-first-virtually-guided-at-home-rapid-test-u


F. Obradović

s
s

e
f
p
e
a
i
s

Journal of Econometrics 244 (2024) 105842 
Table 2
Estimates and estimated projection bounds.

Data

EUA Sx Shah et al. Sx Shah et al. ASx

𝜃1 Estimates

Apparent 0.846 0.819 0.688
Projection [0.761, 0.800] [0.737, 0.744] [0.619, 0.669]
Emerson et al. (2018) [0.761, 0.800] [0.737, 0.744] [0.619, 0.712]
Thibodeau (1981) [0.761, 0.846] [0.737, 0.819] [0.619, 0.688]

𝜃0 Estimates

Apparent 0.985 0.997 0.994
Projection [0.985, 1.000] [0.997, 1.000] [0.994, 0.997]
Emerson et al. (2018) [0.985, 1.000] [0.997, 1.000] [0.994, 1.000]
Thibodeau (1981) [0.985, 1.000] [0.997, 1.000] [0.994, 0.998]

Note: Estimates of ‘‘apparent’’ performance measures and projections of estimated identified sets for (𝜃1 , 𝜃0)
shown in Fig. 1. Sx denotes the symptomatic, and ASx the asymptomatic individuals.

In Fig. 1(a), the estimate of ‘‘apparent’’ measures is outside the confidence set for (𝜃1, 𝜃0). At the 5% significance level the
hypothesis 𝐻0 ∶ (𝜃1, 𝜃0) = (84.6%, 98.5%) would be rejected. In other words, under the assumptions, the true sensitivity and specificity
are not jointly equal to currently often cited ‘‘apparent’’ values (84.6%, 98.5%) at the ubiquitous level of significance. The argument
for the same value holds in all other samples, as well as for the interim ‘‘apparent’’ estimates (91.7%, 100%).

Estimated bounds on false negative rate for symptomatic individuals within 7 days of symptom onset are [20%, 23.9%] in the final
EUA study data, which is between 1.3 and 1.55 times larger than the corresponding ‘‘apparent’’ estimate of 15.4%. Comparison with
the often-cited interim estimate of 8.3% reveals that the estimated true false negative rate is between 2.41 and 2.88 times larger than
the ‘‘apparent’’ analog. Data from Shah et al. (2021) yield estimated bounds of [25.6%, 26.3%] for symptomatic and [33.1%, 38.1%]
for asymptomatic individuals. These estimates suggest that the true false negative rates may be up to 3.17 and 4.59 times higher
than ‘‘apparent’’ interim analogs for symptomatic and asymptomatic individuals, respectively. Appendix Appendix C shows that
assuming lower 𝑠1 further exacerbates the difference between true and ‘‘apparent’’ false negative rates. It also notes that assuming
any 0.9 < 𝑠1 < 1 lessens the difference. However, the apparent measure is never contained by the set. Hence for any feasible 𝑠1,
apparent sensitivity overestimates true sensitivity.

Remark 13. Estimated average number of infected symptomatic people who are missed by the antigen test is up to 3.17 times
higher than the test users may be led to believe by reported ‘‘apparent’’ estimates.

Hadgu (1999) highlights that the errors in measurement of 2.9 percentage points for sensitivity are significant. The differences I
find in this paper between the estimates of ‘‘apparent’’ and true sensitivity are substantially larger under plausible assumptions. The
differences vary between 4.6 and 8.5 percentage points using the final EUA study data. Results from Shah et al. (2021) exacerbate the
discrepancies when compared to the final EUA study ‘‘apparent’’ sensitivity to as much 10.9 percentage points in the symptomatic
population and 22.7 percentage points in the asymptomatic population. Even though the estimates of specificity remain close to the
estimates of ‘‘apparent’’ specificity, the findings for sensitivity warrant further attention.

Remark 14. FDA has granted EUA to tests demonstrating at least 80% estimated sensitivity. The results show that, depending on
interpretation and assumed (𝑠1, 𝑠0), the test may not satisfy the requirement.

Panels (d), (e), and (f) of Fig. 1 show estimates of the identified set for (𝜃1, 𝜃0) and compare them with estimates obtained using
comparable methods. Results are represented graphically in order preserve the specific linear structure of the identified set that is
lost through projection. The sharp identified set provides a substantial reduction in size in all three samples over the comparable
methods, and can be very informative. Estimates of the identified set do not contain the estimates of ‘‘apparent’’ measures in any
of the samples. Owing to the lack of sharpness, bounds estimated using other methods do not necessarily exclude the ‘‘apparent’’
measures. Table 2 shows that projected bounds on 𝜃1 and 𝜃0 can also be proper subsets of those produced by comparable methods.

Remark 15. Projected bounds on 𝜃𝑗 from Emerson et al. (2018) are equivalent to projected bounds from Proposition 1 without
imposing the tendency to wrongly agree for any 𝑦. Rows of Table 2 marked by ‘‘Projection’’ and ‘‘Emerson et al. (2018)’’ thus
correspond to projection bounds with and without assuming the tendency to wrongly agree for 𝑦 = 1, respectively. As mentioned by
Remark 6, the assumption may have identifying power depending on 𝑃 (𝑡, 𝑟) and (𝑠1, 𝑠0). For data in the first two columns, estimates
uggest that the assumption has no identifying power. However, among Shah et al. (2021) ASx individuals, it effectively halves the
ize of the estimated identified set.

Panels (g), (h), and (i) of Fig. 1 depict the width of prevalence bounds implied by estimates from the three methods when
xtrapolated to populations screened by the antigen test. The solid line represents bound width given estimates of the identified set
or (𝜃1, 𝜃0) and (13) for various hypothetical values of 𝑄(𝑡 = 1). As previously highlighted, for 𝑄(𝑡 = 1) = 𝑃 (𝑡 = 1) prevalence becomes
oint-identified, despite (𝜃1, 𝜃0) being only partially identified. The remaining lines refer to widths of bounds in (14), following from
stimates obtained by comparable methods which yield rectangular bounds on (𝜃1, 𝜃0). The resulting sharp bounds on prevalence are
lways proper subsets of bounds found via the other two methods. Benefits stemming from the particular shape of the sharp joint
dentified set are immediate. Even when the projected bounds are not strictly narrower compared to other methods, the identified
et can yield substantially narrower bounds on derived parameters, as shown by Fig. 1(g), (h).
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6. Applications beyond diagnostic test performance

Derived results have applications that extend beyond diagnostic test performance studies. This section offers three illustrative
xamples, highlighting further utility of the bounds on (𝜃1, 𝜃0) and 𝑄(𝑦 = 1). It also interprets the tendency to wrongly agree in

the relevant contexts, and contrasts it with the exclusion restrictions 𝐸[𝑡|𝑟, 𝑦] = 𝐸[𝑡|𝑟] and 𝐸[𝑡|𝑟, 𝑦] = 𝐸[𝑡|𝑦] from Cross and Manski
2002).17

In abstraction, suppose 𝑃 (𝑡, 𝑟) is identified and 𝑃 (𝑟|𝑦) can be identified or credibly bounded, for (𝑡, 𝑟, 𝑦) ∈ {0, 1}3. A salient case is
he one in which a validation dataset identifying 𝑃 (𝑟|𝑦) exists, but it cannot be matched with the dataset identifying 𝑃 (𝑡, 𝑟). This may
appen due to legal or privacy concerns, lack of adequate identifiers, or because the two datasets are independent. Sharp bounds
n 𝑃 (𝑡, 𝑦) and its features follow from the results. If (𝜃1, 𝜃0) are bounded and they extrapolate to other populations where data only
n 𝑡 is available, one can also sharply bound 𝑄(𝑦 = 1).

xample 3 (Surveys and Validation Data). Suppose 𝑦 is measured using a survey response 𝑟, and 𝑡 is a binary outcome of interest for
urveyed individuals. This identifies 𝑃 (𝑡, 𝑟). It is well known that survey responses are susceptible to misclassification errors. This has
een discussed in the contexts where 𝑦 is participation in government welfare programs, disability, or employment status (Poterba
nd Summers, 1986; Kreider and Pepper, 2007). For example, let 𝑦 be true participation in the Food Stamp program, 𝑟 self-reported
articipation, and let 𝑡 denote whether a person has completed higher education. Bollinger and David (1997) and Meyer et al. (2022)
dentify 𝑃 (𝑟|𝑦) using administrative validation data for the American Community Survey, the Current Population Survey and the
urvey of Income and Program Participation. One can then bound functions of 𝐸[𝑡|𝑦] in these surveys.

Researchers may find the tendency to wrongly agree for 𝑦 = 𝑗 credible, maintaining it to further tighten the bounds. For 𝑦 = 1
n the example above, it would mean that people who falsely report no participation are more likely not to have a higher education
egree than to have one. The restriction 𝐸[𝑡|𝑟, 𝑦] = 𝐸[𝑡|𝑟] holds if rates of higher education depend on program participation only
hrough the survey response. That is, for people who provide a response 𝑟, higher education rates must not change with true program
articipation. Conversely, 𝐸[𝑡|𝑟, 𝑦] = 𝐸[𝑡|𝑦] holds if for individuals who have true participation 𝑦, higher education rates must be

the same among those who gave correct and incorrect answers. Hence, one may consider the tendency to wrongly agree to be more
plausible in this context.

Results in Section 3 could be useful if one wishes to learn 𝑄(𝑦 = 1) in a different population to which 𝐸[𝑡|𝑦] extrapolates, and for
hich only 𝑡 is available. In the context of the example, if access to a dataset containing local rates of higher education is available,

hen local Food Stamp program participation rates can be sharply bounded using knowledge of 𝐸[𝑡|𝑦] from the survey.

xample 4 (Protected Classes and Privacy). Let 𝑡 be an outcome of interest and 𝑦 a protected class. Administrative data often do
ot contain 𝑦, but its proxy 𝑟 may be available, identifying 𝑃 (𝑡, 𝑟). Some commonly used proxies are constructed based on datasets
n which both 𝑟 and 𝑦 are observed, so their performance may be known. For a 𝑡 of interest, we can then sharply bound various
arameters of 𝑃 (𝑡, 𝑦). For example, 𝑦 may be a latent binary indicator for a certain race, and its proxy 𝑟 may be constructed using
he Bayesian Improved Surname Geocoding (BISG) method. Performance of BISG has been validated in several datasets, potentially
roviding information on 𝑃 (𝑟|𝑦) (Elliott et al., 2008; Imai and Khanna, 2016). Elzayn et al. (2023) consider a similar setting where
is a tax audit flag, and seek to identify racial tax audit disparity 𝐸[𝑡|𝑦 = 1] − 𝐸[𝑡|𝑦 = 0] = 𝜃1 + 𝜃0 − 1 in a dataset where only
is available.18 This parameter can be bounded using 𝑃 (𝑟|𝑦). One could also use results from Section 3 to sharply bound racial

omposition 𝑄(𝑦 = 1) in a population with the same 𝐸[𝑡|𝑦] if a dataset containing only tax audit rates is available.
The tendency to wrongly agree for 𝑦 = 0 would mean that people misclassified as being of race 𝑟 = 1 are more likely to be audited

han not to be audited. This would be plausible if characteristics of individuals with 𝑦 = 0 that lead to racial misclassification also
ake audit the more likely outcome. The assumption 𝐸[𝑡|𝑟, 𝑦] = 𝐸[𝑡|𝑟] maintains that tax audit rates for people classified as 𝑟
ould not vary with their true race. This would hold if audit decisions depend on race only through information summarized by 𝑟.
onversely, 𝐸[𝑡|𝑟, 𝑦] = 𝐸[𝑡|𝑦] would hold if for people of race 𝑦 audit rates do not vary with their classified race 𝑟. This would be the
ase if audit decisions depend on information summarized by 𝑟 only through true race. If any of these assumptions are plausible,
esearchers may use them to obtain tighter bounds.

The same arguments apply to measurement of racial disparities in health care, where 𝑡 can be, for example, medication
onadherence. Weissman and Hasnain-Wynia (2011) explain that race is often missing from medical claims data and studies
alidating performance of BISG in such datasets are available (Adjaye-Gbewonyo et al., 2014).

xample 5 (Binary Classifiers). Let 𝑡 be a binary classifier whose performance is determined using an imperfect binary classifier or
abel 𝑟 as a reference. The discussion herein readily applies to any such setting. In general, 𝑟 may be imperfect when determined by
abelers or algorithms (Cannings et al., 2020). For example, labels 𝑟 are often obtained through services like the Amazon Mechanical
urk. Mislabeling may happen due to human error, inattentive labelers, or malicious mislabeling activity. If researchers are be able
o determine misclassification rates (𝑠1, 𝑠0), then (𝜃1, 𝜃0) may be bounded. Foody (2010) notes that (𝜃1, 𝜃0) are often of interest in
he context of remote sensing applications, such as satellite imaging. However, reference data 𝑟 are commonly imperfect. Carlotto
2009) explains that in some cases, it may be possible to learn (𝑠1, 𝑠0) by observing the ground truth 𝑦 in validation studies. When

17 Note that 𝐸[𝑡|𝑟, 𝑦] = 𝐸[𝑡|𝑦] is equivalent to 𝑡 ⟂⟂ 𝑟|𝑦, which is frequently considered implausible in the context of diagnostic tests, as discussed by Section 2.1.
18 The parameter 𝜃 + 𝜃 − 1 is known as the Youden’s J statistic in the medical literature.
1 0
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the performance of 𝑟 cannot be validated, one can use the bounds to perform sensitivity analyses and determine how much apparent
nd real performance may differ for various possible values of (𝑠1, 𝑠0).

Binary diagnostic tests are specific examples of binary classifiers, and the interpretation of the tendency to wrongly agree remains
nchanged for general 𝑡 and 𝑟. Its plausibility can be argued based on the properties of the classifiers. Foody (2023) notes that the
xclusion restriction 𝐸[𝑡|𝑟, 𝑦] = 𝐸[𝑡|𝑦] may also commonly be implausible in the context of binary classifiers, especially when 𝑡 and
are based on the same phenomenon or process. The restriction 𝐸[𝑡|𝑟, 𝑦] = 𝐸[𝑡|𝑟] asserts that 𝑡 ⟂⟂ 𝑦|𝑟, or that 𝑡 cannot provide

dditional information about 𝑦 over 𝑟, which may be unappealing depending on the context.
Results from Section 3 also apply directly. When using the classifier 𝑡 to determine the prevalence of 𝑦 in a screening study, one

an use them to obtain sharp bounds on 𝑄(𝑦 = 1) if the performance of 𝑡 extrapolates to the screened population.

. Concluding remarks

This paper derives the smallest possible identified set for sensitivity and specificity of a diagnostic test of interest in standard
ettings, when the reference test is imperfect. It formalizes an existing assumption on dependence between the reference and the test
f interest, and shows how it can further reduce the size of the identified set. Finally, it develops an appropriate uniform inference
rocedure for the points in the identified set, enabling construction of confidence sets. The study also indicates applicability of the
ethod beyond the context of diagnostic test performance studies.

The framework is proposed as a solution to a ubiquitous problem in diagnostic test performance studies, and it can be directly
pplied to existing study data to bound true test performance. Doing so demonstrates that a widely used COVID-19 antigen test
ends to produce significantly more false negative results than what the currently cited figures suggest. Since other rapid COVID-19
ntigen tests may exhibit similar tendencies, these findings warrant further investigation.
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ppendix A. Bounding predictive values

Positive predictive value (PPV) is the probability that a patient is diseased conditional on receiving a positive test result. Negative
redictive value (NPV) is the probability that a patient who has tested negative is truly healthy. Clinicians are usually more concerned
ith knowing predictive values of a test 𝑡 than its sensitivity and specificity.

The probability of the patient being diseased prior to observing a test result is referred to as a pre-test probability. For a known
re-test probability, sensitivity and specificity are often extrapolated from test performance studies to find predictive values using
ayes’ theorem. With this in mind, let 𝑄(𝑡, 𝑦) be the distribution of the clinical population of interest and suppose (𝜃1, 𝜃0) extrapolate
o this population in the sense of Assumption 4. As in Section 3, we use 𝑄 to emphasize that test performance is extrapolated and that
(𝑦 = 1) may differ from the prevalence in the performance study population. Clinicians settle on a pre-test probability 𝜋 = 𝑄(𝑦 = 1)
sing the knowledge of local rates of infection and patients’ symptoms and characteristics (Watson et al., 2020).

Manski (2020) provides bounds on predictive values for COVID-19 antibody tests using point identified values of 𝜃1 and 𝜃0, when
he pre-test probability 𝜋 is bounded. The author notes that the analysis can be generalized to take bounds rather than exact values
f 𝜃1 and 𝜃0 as inputs. Ziegler (2021) extends the analysis of predictive values when 𝜃1 and 𝜃0 are partially identified due to an

imperfect reference test, assuming that 𝑠0 = 1. The bounds below do not require that 𝑠0 = 1 in the performance study.
Predictive values are defined as:

𝑃𝑃𝑉 = 𝑄(𝑦 = 1|𝑡 = 1) =
𝜃1𝜋

𝜃1𝜋 + (1 − 𝜃0)(1 − 𝜋)

𝑁𝑃𝑉 = 𝑄(𝑦 = 0|𝑡 = 0) =
𝜃0(1 − 𝜋)

𝜃0(1 − 𝜋) + (1 − 𝜃1)𝜋
.

(A.1)

Assume that the sharp identification region (𝜃1 ,𝜃0)(𝑠1, 𝑠0) for (𝜃1, 𝜃0) and the pre-test probability of the clinician 𝜋 are known.
From (A.1), it can be seen that both PPV and NPV increase with 𝜃1 and 𝜃0. Thus, the sharp bounds are:

𝑃𝑃𝑉 ∈

[

𝜃𝐿1 𝜋

𝜃𝐿1 𝜋 + (1 − 𝜃𝐿0 )(1 − 𝜋)
,

𝜃𝑈1 𝜋

𝜃𝑈1 𝜋 + (1 − 𝜃𝑈0 )(1 − 𝜋)

]

𝑁𝑃𝑉 ∈

[

𝜃𝐿0 (1 − 𝜋)
𝐿 𝐿 ,

𝜃𝑈0 (1 − 𝜋)
𝑈 𝑈

]

.

(A.2)
𝜃0 (1 − 𝜋) + (1 − 𝜃1 )𝜋 𝜃0 (1 − 𝜋) + (1 − 𝜃1 )𝜋
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If the clinician is not willing to settle on a single value of 𝜋, rather on a range of values 𝜋 ∈ [𝜋𝐿, 𝜋𝐻 ], the bounds are simply:

𝑃𝑃𝑉 ∈

[

𝜃𝐿1 𝜋𝐿
𝜃𝐿1 𝜋𝐿 + (1 − 𝜃𝐿0 )(1 − 𝜋𝐿)

,
𝜃𝑈1 𝜋𝐻

𝜃𝑈1 𝜋𝐻 + (1 − 𝜃𝑈0 )(1 − 𝜋𝐻 )

]

𝑁𝑃𝑉 ∈

[

𝜃𝐿0 𝜋𝐻
𝜃𝐿0 𝜋𝐻 + (1 − 𝜃𝐿1 )(1 − 𝜋𝐻 )

,
𝜃𝑈0 𝜋𝐿

𝜃𝑈0 𝜋𝐿 + (1 − 𝜃𝑈1 )(1 − 𝜋𝐿)

]

.

(A.3)

The bounds are generalizable analogously to the previously outlined case for bounding prevalence when the identification region
(𝜃1 ,𝜃0)(𝑠1, 𝑠0) is expanded to (𝜃1 ,𝜃0)():

𝑃𝑃𝑉 ∈

[

min
(𝜃1 ,𝜃0)∈(𝜃1 ,𝜃0)()

{

𝜃1𝜋𝐿
𝜃1𝜋𝐿 + (1 − 𝜃0)(1 − 𝜋𝐿)

}

, max
(𝜃1 ,𝜃0)∈(𝜃1 ,𝜃0)()

{

𝜃1𝜋𝐻
𝜃1𝜋𝐻 + (1 − 𝜃0)(1 − 𝜋𝐻 )

}

]

𝑁𝑃𝑉 ∈

[

min
(𝜃1 ,𝜃0)∈(𝜃1 ,𝜃0)()

{

𝜃0𝜋𝐻
𝜃0𝜋𝐻 + (1 − 𝜃1)(1 − 𝜋𝐻 )

}

, max
(𝜃1 ,𝜃0)∈(𝜃1 ,𝜃0)()

{

𝜃0𝜋𝐿
𝜃0𝜋𝐿 + (1 − 𝜃1)(1 − 𝜋𝐿)

}

]

.

(A.4)

Appendix B. Additional moment functions

This section defines moment functions for remaining identified sets in Propositions 1 and 2 when the tests have a tendency to
wrongly agree only for 𝑦 = 0, and for both 𝑦 = 1 and 𝑦 = 0. All proofs are collected in Appendix E.

Focus first on the bounds on 𝜃1 from Proposition 1. Following the reasoning in Section 4, we decompose the bounds on 𝜃1 to
construct the appropriate moment inequalities. Note that there are four values determined by the population parameters that are
all lower bounds, and four values that are all upper bounds on 𝜃1 given (𝑠1, 𝑠0). One lower and one upper bound are trivial since
they state that 𝜃1 ≥ 0 and 𝜃1 ≤ 1. Both can be omitted since 𝜃1 ∈ [0, 1] by definition. We can then represent the bound on 𝜃1 using
six moment inequalities, corresponding to the six non-trivial boundary values of the identified set. One additional moment equality
is needed to represent the joint identification region.

Proposition 5. Let the moment function 𝑚 be:

𝑚(𝑊𝑖, 𝜃) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑚1(𝑊𝑖, 𝜃)

𝑚2(𝑊𝑖, 𝜃)

𝑚3(𝑊𝑖, 𝜃)

𝑚4(𝑊𝑖, 𝜃)

𝑚5(𝑊𝑖, 𝜃)

𝑚6(𝑊𝑖, 𝜃)

𝑚7(𝑊𝑖, 𝜃)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(−𝜃1 + 𝑠1)
𝑟𝑖−1+𝑠0
𝑠1−1+𝑠0

+ (𝑡𝑖 − 1)𝑟𝑖

(−𝜃1 + 1 − 𝑠1)
𝑟𝑖−1+𝑠0
𝑠1−1+𝑠0

+ (𝑟𝑖 − 1)(1 − 𝑡𝑖)

(−𝜃1 + 1) 𝑟𝑖−1+𝑠0𝑠1−1+𝑠0
+ (𝑡𝑖 − 1)

𝜃1
𝑟𝑖−1+𝑠0
𝑠1−1+𝑠0

− 𝑡𝑖

(𝜃1 − 𝑠1)
𝑟𝑖−1+𝑠0
𝑠1−1+𝑠0

− 𝑡𝑖(1 − 𝑟𝑖)

(𝜃1 − 1 + 𝑠1)
𝑟𝑖−1+𝑠0
𝑠1−1+𝑠0

− 𝑡𝑖𝑟𝑖

(𝜃0 − 1)(1 − 𝑟𝑖−1+𝑠0
𝑠1−1+𝑠0

) − 𝜃1
𝑟𝑖−1+𝑠0
𝑠1−1+𝑠0

+ 𝑡𝑖

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (B.1)

oint identification region Θ(𝑃 ) =
⋃

(𝑠1 ,𝑠0)∈

(

(𝜃1 ,𝜃0)(𝑠1, 𝑠0) × {(𝑠1, 𝑠0)}
)

with (𝜃1 ,𝜃0)(𝑠1, 𝑠0) defined in Proposition 1 is represented by the
moment function 𝑚. For each 𝜃 ∈ [0, 1]2 ×  such that 𝐸𝑃

(

𝑚𝑗 (𝑊𝑖, 𝜃)
)

≤ 0 for j=1,…,6 and 𝐸𝑃
(

𝑚7(𝑊𝑖, 𝜃)
)

= 0, it must be that 𝜃 ∈ Θ(𝑃 ).
onversely, if 𝜃 ∈ Θ(𝑃 ), then 𝐸𝑃

(

𝑚𝑗 (𝑊𝑖, 𝜃)
)

≤ 0 for j=1,…,6 and 𝐸𝑃
(

𝑚7(𝑊𝑖, 𝜃)
)

= 0.

The same reasoning applies for other bounds. Assume that the index and reference tests have a tendency to wrongly agree only
or 𝑦 = 0. As in the case when the tests have a tendency to wrongly agree only for 𝑦 = 1, the three non-trivial lower-bound values
re identical to the ones when there is no tendency to wrongly agree for any 𝑦. There are four cases for the upper bound, one of
hich is:

𝜃0 ≤

(

𝑃𝑠1 ,𝑠0 (𝑟 = 1, 𝑦 = 0)
2

+ 𝑃𝑠1 ,𝑠0 (𝑟 = 0, 𝑦 = 0)

)

1
𝑃𝑠1 ,𝑠0 (𝑦 = 0)

=
1 + 𝑠0

2
(B.2)

Again, this is a restriction on the parameter space, since it states only that 𝜃0 ∈ [0, 1+𝑠02 ]. The relevant parameter space for 𝜃 when
the two tests have a tendency to wrongly agree for 𝑦 = 0 is 𝜃 ∈

⋃

(𝑠1 ,𝑠0)∈ [0, 1] × [0, 1+𝑠02 ] × {(𝑠1, 𝑠0)}. The restriction allows 𝜃0 > 𝑠0,
1−𝑠0 .
but not by more than 2
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Table C.1
Estimates.

Data 𝜃1 Estimates 𝜃0 Estimates

Appar. 𝑠1 = 0.9 𝑠1 ∈ [0.8, 0.9] Appar. 𝑠1 = 0.9 𝑠1 ∈ [0.8, 0.9]

EUA Sx 0.846 [0.761, 0.800] [0.677, 0.800] 0.985 [0.985, 1.000] [0.984, 1.000]
Shah et al. Sx 0.819 [0.737, 0.744] [0.655, 0.744] 0.997 [0.997, 1.000] [0.997, 1.000]
Shah et al. ASx 0.688 [0.619, 0.669] [0.550, 0.669] 0.994 [0.994, 0.997] [0.994, 0.997]

Note: Apparent estimated values and estimated projected bounds for (𝜃1 , 𝜃0) for different . Sx denotes the symptomatic, and
ASx the asymptomatic individuals.

emark 16. If the index and reference tests have a tendency to wrongly agree only for 𝑦 = 0, then the function 𝑚̄0 defining moment
nequalities that represent the corresponding identified set for 𝜃 ∈

⋃

(𝑠1 ,𝑠0)∈ [0, 1] × [0, 1+𝑠02 ] × {(𝑠1, 𝑠0)} would be:

𝑚̄0(𝑊𝑖, 𝜃) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑚̄0
1(𝑊𝑖, 𝜃)

𝑚̄0
2(𝑊𝑖, 𝜃)

𝑚̄0
3(𝑊𝑖, 𝜃)

𝑚̄0
4(𝑊𝑖, 𝜃)

𝑚̄0
5(𝑊𝑖, 𝜃)

𝑚̄0
6(𝑊𝑖, 𝜃)

𝑚̄0
7(𝑊𝑖, 𝜃)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(−𝜃0 + 𝑠0)
(

1 − 𝑟𝑖−1+𝑠0
𝑠1−1+𝑠0

)

+ (𝑟𝑖 − 1)𝑡𝑖

(−𝜃0 + 1 − 𝑠0)
(

1 − 𝑟𝑖−1+𝑠0
𝑠1−1+𝑠0

)

− 𝑡𝑖𝑟𝑖

(−𝜃0 + 1)
(

1 − 𝑟𝑖−1+𝑠0
𝑠1−1+𝑠0

)

− 𝑡𝑖

𝜃0
(

1 − 𝑟𝑖−1+𝑠0
𝑠1−1+𝑠0

)

+ (𝑡𝑖 − 1)

(𝜃0 − 𝑠0)
(

1 − 𝑟𝑖−1+𝑠0
𝑠1−1+𝑠0

)

− 𝑟𝑖(1 − 𝑡𝑖)
(

𝜃0 +
−1+𝑠0

2

)(

1 − 𝑟𝑖−1+𝑠0
𝑠1−1+𝑠0

)

− (1 − 𝑡𝑖)(1 − 𝑟𝑖)

(𝜃0 − 1)(1 − 𝑟𝑖−1+𝑠0
𝑠1−1+𝑠0

) − 𝜃1
𝑟𝑖−1+𝑠0
𝑠1−1+𝑠0

+ 𝑡𝑖

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (B.3)

he proof is analogous to that of Proposition 4.

Finally, the same steps yield a moment function that defines the identified set when the tests have a tendency to wrongly
gree for both 𝑦 = 1 and 𝑦 = 0. As in the case where the tendency exists only for 𝑦 = 1, the appropriate parameter space is
∈
⋃

(𝑠1 ,𝑠0)∈ [0,
1+𝑠1
2 ] × [0, 1+𝑠02 ] × {(𝑠1, 𝑠0)}.

Proposition 6. Assume that the index and reference tests have a tendency to wrongly agree for 𝑦 = 1 and 𝑦 = 0. Let the moment function
̄̄𝑚 be equal to 𝑚̄1 in (18) in all components except ̄̄𝑚4(𝑊𝑖, 𝜃), and ̄̄𝑚6(𝑊𝑖, 𝜃):

̄̄𝑚4(𝑊𝑖, 𝜃) = 𝜃1
𝑟𝑖 − 1 + 𝑠0
𝑠1 − 1 + 𝑠0

− 𝑡𝑖 +
1
2

(

𝑟𝑖 − 𝑠1
𝑟𝑖 − 1 + 𝑠0
𝑠1 − 1 + 𝑠0

)

̄̄𝑚6(𝑊𝑖, 𝜃) =
(

𝜃1 +
−1 + 𝑠1

2

) 𝑟𝑖 − 1 + 𝑠0
𝑠1 − 1 + 𝑠0

− 𝑡𝑖𝑟𝑖 +
1
2

(

𝑟𝑖 − 𝑠1
𝑟𝑖 − 1 + 𝑠0
𝑠1 − 1 + 𝑠0

)

(B.4)

oint identified set Θ(𝑃 ) =
⋃

(𝑠1 ,𝑠0)∈

(

̄̄(𝜃1 ,𝜃0)(𝑠1, 𝑠0) × {(𝑠1, 𝑠0)}
)

for ̄̄(𝜃1 ,𝜃0)(𝑠1, 𝑠0) defined in Proposition 2 is represented by the moment
unction ̄̄𝑚. For each 𝜃 ∈

⋃

(𝑠1 ,𝑠0)∈ [0,
1+𝑠1
2 ] × [0, 1+𝑠02 ] × {(𝑠1, 𝑠0)} such that 𝐸𝑃

( ̄̄𝑚𝑗 (𝑊𝑖, 𝜃)
)

≤ 0 for j=1,…,6 and 𝐸𝑃
( ̄̄𝑚7(𝑊𝑖, 𝜃)

)

= 0, it
must be that 𝜃 ∈ Θ(𝑃 ). Conversely, if 𝜃 ∈ Θ(𝑃 ), then 𝐸𝑃

( ̄̄𝑚𝑗 (𝑊𝑖, 𝜃)
)

≤ 0 for j=1,…,6 and 𝐸𝑃
( ̄̄𝑚7(𝑊𝑖, 𝜃)

)

= 0.

Appendix C. Sensitivity analysis

The majority of estimates obtained from the 34 data sets used by Arevalo-Rodriguez et al. (2020) indicate that 𝑠1 may be even
lower than 90%. To explore the implications of that possibility, I perform a sensitivity analysis. For exposition purposes, I assume
𝑠1 ∈ [0.8, 0.9], so  = [0.8, 0.9] × {1}. Values 𝑠1 < 0.8 yield the same conclusion. Estimates of the identified set as well as the
corresponding 95% confidence sets are found using data from each of the three samples, and presented together with findings from
Section 5 in Figs. C.1–C.3 to facilitate comparison. Panel (b) of each Figure depicts the results under the alternative assumption.
The solid red region represents the estimated identified set for (𝜃1, 𝜃0). It is no longer a line. In all figures both the confidence and
the estimated identified set become larger, but remain informative. Table C.1 shows estimates of the projected bounds. Bounds for
specificity are unchanged, while those for sensitivity expand only downwards. Assumed values 𝑠1 < 0.8 accentuate this effect. The
tendency of ‘‘apparent’’ sensitivity to overestimate true sensitivity increases as 𝑠1 is reduced. On the other hand, allowing for 𝑠1 > 0.9
enlarges the estimated upper bounds on sensitivity, but for values of 𝑠1 < 1 it never surpasses ‘‘apparent’’ sensitivity. Hence, the
inding that ‘‘apparent’’ sensitivity overestimates true sensitivity is robust to different assumed values of 𝑠1.

ppendix D. Auxiliary results

emma 1. For a fixed (𝑠1, 𝑠0) and any (𝑗, 𝑘, 𝑙) ∈ {0, 1}3 it holds that:
𝑃 (𝑡 = 𝑗, 𝑟 = 𝑘) − 𝑃𝑠1 ,𝑠0 (𝑟 = 𝑘, 𝑦 = 1 − 𝑙) = 𝑃𝑠1 ,𝑠0 (𝑟 = 𝑘, 𝑦 = 𝑙) − 𝑃 (𝑡 = 1 − 𝑗, 𝑟 = 𝑘). (D.1)
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Fig. C.1. Estimates, and 95% confidence sets for ‘‘apparent’’ measures and points in the identified set for (𝜃1 , 𝜃0) in the EUA study. In panel (a)  = {(0.9, 1)},
and  = [0.8, 0.9] × {1} in panel (b).

Fig. C.2. Estimates, and 95% confidence sets for ‘‘apparent’’ measures and points in the identified set for (𝜃1 , 𝜃0) in the symptomatic population of Shah et al.
(2021). In panel (a)  = {(0.9, 1)}, and  = [0.8, 0.9] × {1} in panel (b).

Fig. C.3. Estimates, and 95% confidence sets for ‘‘apparent’’ measures and points in the identified set for (𝜃1 , 𝜃0) in the asymptomatic population of Shah et al.
(2021). In panel (a)  = {(0.9, 1)}, and  = [0.8, 0.9] × {1} in panel (b).
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Proof. Suppressing the subscript in 𝑃𝑠1 ,𝑠0 for clarity:

𝑃 (𝑡 = 𝑗, 𝑟 = 𝑘) − 𝑃 (𝑟 = 𝑘, 𝑦 = 1 − 𝑙) =

= 𝑃 (𝑡 = 𝑗, 𝑟 = 𝑘, 𝑦 = 𝑙) + 𝑃 (𝑡 = 𝑗, 𝑟 = 𝑘, 𝑦 = 1 − 𝑙)

− 𝑃 (𝑡 = 𝑗, 𝑟 = 𝑘, 𝑦 = 1 − 𝑙) − 𝑃 (𝑡 = 1 − 𝑗, 𝑟 = 𝑘, 𝑦 = 1 − 𝑙)

= 𝑃 (𝑡 = 𝑗, 𝑟 = 𝑘, 𝑦 = 𝑙) − 𝑃 (𝑡 = 1 − 𝑗, 𝑟 = 𝑘, 𝑦 = 1 − 𝑙)

= 𝑃 (𝑡 = 𝑗, 𝑟 = 𝑘, 𝑦 = 𝑙) + 𝑃 (𝑡 = 1 − 𝑗, 𝑟 = 𝑘, 𝑦 = 𝑙)

− 𝑃 (𝑡 = 1 − 𝑗, 𝑟 = 𝑘, 𝑦 = 𝑙) − 𝑃 (𝑡 = 1 − 𝑗, 𝑟 = 𝑘, 𝑦 = 1 − 𝑙)

= 𝑃 (𝑟 = 𝑘, 𝑦 = 𝑙) − 𝑃 (𝑡 = 1 − 𝑗, 𝑟 = 𝑘). □

(D.2)

Lemma 2. Let 𝑃 (𝑡, 𝑟) and (𝑠1, 𝑠0) be known, and 𝜃𝑗 (𝑠1, 𝑠0) =
[

𝜃𝐿𝑗 , 𝜃
𝑈
𝑗

]

as in (7). Define:

̂𝜃𝑗 (𝑠1, 𝑠0) =
[

𝑚𝑎𝑥
(

0, 𝑃 (𝑡 = 𝑗) − 𝑃𝑠1 ,𝑠0 (𝑦 = 1 − 𝑗)
)

, 𝑚𝑖𝑛
(

𝑃 (𝑡 = 𝑗), 𝑃𝑠1 ,𝑠0 (𝑦 = 𝑗)
)] 1

𝑃𝑠1 ,𝑠0 (𝑦 = 𝑗)
(D.3)

Then 𝜃𝑗 (𝑠1, 𝑠0) ⊆ ̂𝜃𝑗 (𝑠1, 𝑠0).

roof. By Lemma 1, the lower bound in (D.3) is equivalent to 𝑚𝑎𝑥
(

0, 𝑃 (𝑡 = 𝑗, 𝑟 = 𝑗) − 𝑃𝑠1 ,𝑠0 (𝑟 = 𝑗, 𝑦 = 1 − 𝑗) + 𝑃𝑠1 ,𝑠0 (𝑟 = 1 − 𝑗, 𝑦 =

𝑗)−𝑃 (𝑡 = 1−𝑗, 𝑟 = 1−𝑗)
)

1
𝑃𝑠1 ,𝑠0 (𝑦=𝑗)

≤ 𝜃𝐿𝑗 since the maximum of a sum of functions is at most the sum of individual maxima. Similarly,

he upper bound is 𝑚𝑖𝑛
(

𝑃 (𝑡 = 𝑗, 𝑟 = 𝑗) + 𝑃 (𝑡 = 𝑗, 𝑟 = 1 − 𝑗), 𝑃𝑠1 ,𝑠0 (𝑟 = 𝑗, 𝑦 = 𝑗) + 𝑃𝑠1 ,𝑠0 (𝑟 = 1 − 𝑗, 𝑦 = 𝑗)
)

1
𝑃𝑠1 ,𝑠0 (𝑦=𝑗)

≥ 𝜃𝑈𝑗 . □

emma 3. For any 𝑃 (𝑡, 𝑟) and (𝑠1, 𝑠0) such that 𝜃𝐿𝑗 > 𝑠𝑗 it must be that 𝜃𝐿1−𝑗 < 𝑠1−𝑗 .

roof . We prove the claim that 𝜃𝐿1 > 𝑠1 implies 𝜃𝐿0 < 𝑠0. Symmetrically, one can show that 𝜃𝐿0 > 𝑠0 implies 𝜃𝐿1 < 𝑠1.
Suppose that 𝜃𝐿1 > 𝑠1. This is equivalent to 𝜃𝐿1 𝑃𝑠1 ,𝑠0 (𝑦 = 1) > 𝑃𝑠1 ,𝑠0 (𝑟 = 1, 𝑦 = 1) by Assumption 3. Taking any lower bound 𝜃𝐿𝑗

from Propositions 1 and 2 yields:

𝜃𝐿1 𝑃𝑠1 ,𝑠0 (𝑦 = 1) = 𝑚𝑎𝑥
(

0, 𝑃 (𝑡 = 1, 𝑟 = 1) − 𝑃𝑠1 ,𝑠0 (𝑟 = 1, 𝑦 = 0)
)

+ 𝑚𝑎𝑥
(

0, 𝑃𝑠1 ,𝑠0 (𝑟 = 0, 𝑦 = 1) − 𝑃 (𝑡 = 0, 𝑟 = 0)
)

𝜃𝐿0 𝑃𝑠1 ,𝑠0 (𝑦 = 0) = 𝑚𝑎𝑥
(

0, 𝑃 (𝑡 = 0, 𝑟 = 0) − 𝑃𝑠1 ,𝑠0 (𝑟 = 0, 𝑦 = 1)
)

+ 𝑚𝑎𝑥
(

0, 𝑃𝑠1 ,𝑠0 (𝑟 = 1, 𝑦 = 0) − 𝑃 (𝑡 = 1, 𝑟 = 1)
)

.

(D.4)

Since 𝜃𝐿1 > 𝑠1, it must also be that 𝜃𝐿1 > 0 by Assumption 2. By (D.4) then 𝑃 (𝑡 = 1, 𝑟 = 1) − 𝑃𝑠1 ,𝑠0 (𝑟 = 1, 𝑦 = 0) > 0 or
𝑃𝑠1 ,𝑠0 (𝑟 = 0, 𝑦 = 1) − 𝑃 (𝑡 = 0, 𝑟 = 0) > 0.

We show that 𝑃𝑠1 ,𝑠0 (𝑟 = 0, 𝑦 = 1) − 𝑃 (𝑡 = 0, 𝑟 = 0) > 0 must hold when 𝜃𝐿1 > 𝑠1. By way of contradiction suppose that
𝑃𝑠1 ,𝑠0 (𝑟 = 0, 𝑦 = 1) − 𝑃 (𝑡 = 0, 𝑟 = 0) ≤ 0. Since 𝑃 (𝑡 = 1, 𝑟 = 1) − 𝑃𝑠1 ,𝑠0 (𝑟 = 1, 𝑦 = 0) > 0 or 𝑃𝑠1 ,𝑠0 (𝑟 = 0, 𝑦 = 1) − 𝑃 (𝑡 = 0, 𝑟 = 0) > 0, it must
be 𝑃 (𝑡 = 1, 𝑟 = 1) − 𝑃𝑠1 ,𝑠0 (𝑟 = 1, 𝑦 = 0) > 0. Then:

𝜃𝐿1 𝑃𝑠1 ,𝑠0 (𝑦 = 1) = 𝑃 (𝑡 = 1, 𝑟 = 1) − 𝑃𝑠1 ,𝑠0 (𝑟 = 1, 𝑦 = 0) > 𝑃𝑠1 ,𝑠0 (𝑟 = 1, 𝑦 = 1)

⟺ 𝑃 (𝑡 = 1, 𝑟 = 1) > 𝑃 (𝑟 = 1)

which is a contradiction, so 𝑃𝑠1 ,𝑠0 (𝑟 = 0, 𝑦 = 1) − 𝑃 (𝑡 = 0, 𝑟 = 0) > 0. To complete the proof, we consider two cases.
Suppose first that 𝑃 (𝑡 = 1, 𝑟 = 1) − 𝑃𝑠1 ,𝑠0 (𝑟 = 1, 𝑦 = 0) > 0 and 𝑃𝑠1 ,𝑠0 (𝑟 = 0, 𝑦 = 1) − 𝑃 (𝑡 = 0, 𝑟 = 0) > 0. Then, it is immediate from

(D.4) that 𝜃𝐿0 = 0. That 𝜃𝐿0 < 𝑠0 is then direct from Assumption 2 since 𝑠1 + 𝑠0 > 1 and (𝑠1, 𝑠0) ∈ [0, 1]2.
Finally, suppose that 𝑃 (𝑡 = 1, 𝑟 = 1) − 𝑃𝑠1 ,𝑠0 (𝑟 = 1, 𝑦 = 0) ≤ 0 and 𝑃𝑠1 ,𝑠0 (𝑟 = 0, 𝑦 = 1) − 𝑃 (𝑡 = 0, 𝑟 = 0) > 0. By way of contradiction,

uppose that 𝜃𝐿0 ≥ 𝑠0 From (D.4):

𝜃𝐿0 𝑃𝑠1 ,𝑠0 (𝑦 = 0) = 𝑃𝑠1 ,𝑠0 (𝑟 = 1, 𝑦 = 0) − 𝑃 (𝑡 = 1, 𝑟 = 1) ≥ 𝑃𝑠1 ,𝑠0 (𝑟 = 0, 𝑦 = 0)

⟺ 𝑃 (𝑡 = 0, 𝑟 = 1) ≥ 𝑃𝑠1 ,𝑠0 (𝑟 = 1, 𝑦 = 1) + 𝑃𝑠1 ,𝑠0 (𝑟 = 0, 𝑦 = 0)
(D.5)

where the second line follows by Lemma 1. Similarly:

𝜃𝐿1 𝑃𝑠1 ,𝑠0 (𝑦 = 1) = 𝑃𝑠1 ,𝑠0 (𝑟 = 0, 𝑦 = 1) − 𝑃 (𝑡 = 0, 𝑟 = 0) > 𝑃𝑠1 ,𝑠0 (𝑟 = 1, 𝑦 = 1)

⟺ 𝑃 (𝑡 = 1, 𝑟 = 0) > 𝑃𝑠1 ,𝑠0 (𝑟 = 1, 𝑦 = 1) + 𝑃𝑠1 ,𝑠0 (𝑟 = 0, 𝑦 = 0).
(D.6)

Now using 𝑃 (𝑟 = 𝑗) ≥ 𝑃 (𝑡 = 1 − 𝑗, 𝑟 = 𝑗), (D.5) and (D.6):

𝑃 (𝑟 = 0) >𝑠1𝑃𝑠1 ,𝑠0 (𝑦 = 1) + 𝑠0𝑃𝑠1 ,𝑠0 (𝑦 = 0)
(D.7)
𝑃 (𝑟 = 1) ≥𝑠1𝑃𝑠1 ,𝑠0 (𝑦 = 1) + 𝑠0𝑃𝑠1 ,𝑠0 (𝑦 = 0)
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Recall that Assumptions 2 and 3 imply that 𝑃 (𝑟 = 1) ∈ (1 − 𝑠0, 𝑠1), so 𝑃 (𝑟 = 0) ∈ (1 − 𝑠1, 𝑠0). This together with (D.7) implies
𝑗 > 𝑠1𝑃𝑠1 ,𝑠0 (𝑦 = 1) + 𝑠0𝑃𝑠1 ,𝑠0 (𝑦 = 0) for 𝑗 = 0, 1 which is equivalent to 𝑠1 > 𝑠0 and 𝑠0 > 𝑠1 by Assumption 3. This yields a

contradiction, showing that 𝜃𝐿0 < 𝑠0. □

Lemma 4. Suppose that 𝑡 and 𝑟 have a tendency to wrongly agree for some 𝑦 = 𝑗. Then:

• ̄(𝜃1 ,𝜃0)(𝑠1, 𝑠0) ⊂ (𝜃1 ,𝜃0)(𝑠1, 𝑠0) if and only if 𝑃 (𝑡 = 𝑗, 𝑟 = 1 − 𝑗) >
𝑃𝑠1 ,𝑠0 (𝑟=1−𝑗,𝑦=𝑗)

2 > 0;
• ̄(𝜃1 ,𝜃0)(𝑠1, 𝑠0) ⊂ (𝜃1 ,𝜃0)(𝑠1, 𝑠0) implies 𝑠𝑗 < 1.

Proof. Focus on the case where the tests have the tendency to wrongly agree only for 𝑦 = 1.
From (6) it is immediate that ̄(𝜃1 ,𝜃0)(𝑠1, 𝑠0) ⊂ (𝜃1 ,𝜃0)(𝑠1, 𝑠0) is equivalent to ̄𝜃1 (𝑠1, 𝑠0) ⊂ 𝜃1 (𝑠1, 𝑠0), which are intervals. Next,

ince lower bounds of the two intervals are 𝜃𝐿1 , this is further equivalent to 𝜃̄𝑈1 < 𝜃𝑈1 . First, assume 𝑃 (𝑡 = 1, 𝑟 = 0) >
𝑃𝑠1 ,𝑠0 (𝑟=0,𝑦=1)

2 > 0.
Then:

𝜃𝑈1 − 𝜃̄𝑈1 = 𝑚𝑖𝑛
(

𝑃 (𝑡 = 1, 𝑟 = 0), 𝑃𝑠1 ,𝑠0 (𝑟 = 0, 𝑦 = 1)
)

− 𝑚𝑖𝑛

(

𝑃 (𝑡 = 1, 𝑟 = 0),
𝑃𝑠1 ,𝑠0 (𝑟 = 0, 𝑦 = 1)

2

)

= 𝑚𝑖𝑛

(

𝑃 (𝑡 = 1, 𝑟 = 0) −
𝑃𝑠1 ,𝑠0 (𝑟 = 0, 𝑦 = 1)

2
,
𝑃𝑠1 ,𝑠0 (𝑟 = 0, 𝑦 = 1)

2

)

> 0.

Next suppose 𝜃̄𝑈1 < 𝜃𝑈1 . This is equivalent to:

𝑚𝑖𝑛
(

𝑃 (𝑡 = 1, 𝑟 = 0), 𝑃𝑠1 ,𝑠0 (𝑟 = 0, 𝑦 = 1)
)

> 𝑚𝑖𝑛

(

𝑃 (𝑡 = 1, 𝑟 = 0),
𝑃𝑠1 ,𝑠0 (𝑟 = 0, 𝑦 = 1)

2

)

.

By means of contradiction suppose that
𝑃𝑠1 ,𝑠0 (𝑟=0,𝑦=1)

2 = 0 or 𝑃 (𝑡 = 1, 𝑟 = 0) ≤
𝑃𝑠1 ,𝑠0 (𝑟=0,𝑦=1)

2 . If
𝑃𝑠1 ,𝑠0 (𝑟=0,𝑦=1)

2 = 0 then 𝜃̄𝑈1 = 𝜃𝑈1 . If
𝑃 (𝑡 = 1, 𝑟 = 0) ≤

𝑃𝑠1 ,𝑠0 (𝑟=0,𝑦=1)
2 , then again 𝜃̄𝑈1 = 𝜃𝑈1 proving the first claim for 𝑦 = 1. The argument for 𝑦 = 0 is symmetric.

For the second claim, observe that 𝑃 (𝑡 = 𝑗, 𝑟 = 1 − 𝑗) >
𝑃𝑠1 ,𝑠0 (𝑟=1−𝑗,𝑦=𝑗)

2 > 0 implies 𝑃𝑠1 ,𝑠0 (𝑟 = 1 − 𝑗, 𝑦 = 𝑗) = (1 − 𝑠𝑗 )𝑃𝑠1 ,𝑠0 (𝑦 = 𝑗) > 0
or that 𝑠𝑗 < 1 by Assumption 3. □

Appendix E. Proofs

Proposition 1. The sharp identified set (𝜃1 ,𝜃0)(𝑠1, 𝑠0) for (𝜃1, 𝜃0) given reference test sensitivity 𝑠1 and specificity 𝑠0 is:

(𝜃1 ,𝜃0)(𝑠1, 𝑠0) =

{

(𝑡1, 𝑡0) ∶ 𝑡0 = 𝑡1
𝑃𝑠1 ,𝑠0 (𝑦 = 1)
𝑃𝑠1 ,𝑠0 (𝑦 = 0)

+ 1 −
𝑃 (𝑡 = 1)

𝑃𝑠1 ,𝑠0 (𝑦 = 0)
, 𝑡𝑗 ∈ 𝜃𝑗 (𝑠1, 𝑠0)

}

(6)

here 𝜃𝑗 (𝑠1, 𝑠0) =
[

𝜃𝐿𝑗 , 𝜃
𝑈
𝑗

]

is the sharp bound on 𝜃𝑗 defined as:

𝜃𝐿𝑗 =

[

𝑚𝑎𝑥
(

0, 𝑃 (𝑡 = 𝑗, 𝑟 = 𝑗) − 𝑃𝑠1 ,𝑠0 (𝑟 = 𝑗, 𝑦 = 1 − 𝑗)
)

+ 𝑚𝑎𝑥
(

0, 𝑃𝑠1 ,𝑠0 (𝑟 = 1 − 𝑗, 𝑦 = 𝑗) − 𝑃 (𝑡 = 1 − 𝑗, 𝑟 = 1 − 𝑗)
)

]

1
𝑃𝑠1 ,𝑠0 (𝑦 = 𝑗)

𝜃𝑈𝑗 =

[

𝑚𝑖𝑛
(

𝑃 (𝑡 = 𝑗, 𝑟 = 1 − 𝑗), 𝑃𝑠1 ,𝑠0 (𝑟 = 1 − 𝑗, 𝑦 = 𝑗)
)

+ 𝑚𝑖𝑛
(

𝑃 (𝑡 = 𝑗, 𝑟 = 𝑗), 𝑃𝑠1 ,𝑠0 (𝑟 = 𝑗, 𝑦 = 𝑗)
)

]

1
𝑃𝑠1 ,𝑠0 (𝑦 = 𝑗)

.

(7)

Proof of Proposition 1. Alternative proofs can be constructed using Theorem 3.10 from Joe (1997) or Artstein’s inequalities
(Beresteanu et al., 2012).19 Here, I offer a direct proof that follows through a series of claims. Intermediate results will be used to
prove other propositions. First we derive bounds on 𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 𝑘, 𝑦 = 𝑙) for (𝑗, 𝑘, 𝑙) ∈ {0, 1}3. We then show that the pair of
bounds on 𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 𝑗, 𝑦 = 𝑗) and 𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 1− 𝑗, 𝑦 = 𝑗) for a fixed 𝑗 are sharp and that any two points in these bounds are
attainable simultaneously. The sharp bound on 𝜃𝑗 follows by summing the individual bounds and dividing by 𝑃(𝑠1 ,𝑠0)(𝑦 = 1). Finally,
the sharp joint identified set for (𝜃1, 𝜃0) is immediate by the law of total probability.

19 I am grateful to an anonymous referee and Gabriel Ziegler for bringing this to my attention.
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Claim 1. Bounds on 𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 𝑘, 𝑦 = 𝑙) for any (𝑗, 𝑘, 𝑙) ∈ {0, 1}3 are:

𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 𝑘, 𝑦 = 𝑙) ∈

[

𝑚𝑎𝑥
(

0, 𝑃𝑠1 ,𝑠0 (𝑟 = 𝑘, 𝑦 = 𝑙) − 𝑃 (𝑡 = 1 − 𝑗, 𝑟 = 𝑘)
)

,

𝑚𝑖𝑛
(

𝑃 (𝑡 = 𝑗, 𝑟 = 𝑘), 𝑃𝑠1 ,𝑠0 (𝑟 = 𝑘, 𝑦 = 𝑙)
)

]

.

(E.1)

Proof. Probability 𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 𝑘, 𝑦 = 𝑙) for any (𝑗, 𝑘, 𝑙) ∈ {0, 1}3 is the probability of the intersection of events 𝑃𝑠1 ,𝑠0 ({𝑡 = 𝑗, 𝑟 =
𝑘} ∩ {𝑟 = 𝑘, 𝑦 = 𝑙}). An upper bound on 𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 𝑘, 𝑦 = 𝑙) is then:

𝑃𝑠1 ,𝑠0 ({𝑡 = 𝑗, 𝑟 = 𝑘} ∩ {𝑟 = 𝑘, 𝑦 = 𝑙}) ≤ 𝑚𝑖𝑛
(

𝑃 (𝑡 = 𝑗, 𝑟 = 𝑘), 𝑃𝑠1 ,𝑠0 (𝑟 = 𝑘, 𝑦 = 𝑙)
)

. (E.2)

The upper bound (E.2) holds for any (𝑗, 𝑘, 𝑙) ∈ {0, 1}3. Using the upper bound on 𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 𝑘, 𝑦 = 1 − 𝑙), the lower bound on
𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 𝑘, 𝑦 = 𝑙) is:

𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 𝑘, 𝑦 = 𝑙) = 𝑃 (𝑡 = 𝑗, 𝑟 = 𝑘) − 𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 𝑘, 𝑦 = 1 − 𝑙)

≥ 𝑃 (𝑡 = 𝑗, 𝑟 = 𝑘) − 𝑚𝑖𝑛
(

𝑃 (𝑡 = 𝑗, 𝑟 = 𝑘), 𝑃𝑠1 ,𝑠0 (𝑟 = 𝑘, 𝑦 = 1 − 𝑙)
)

= 𝑚𝑎𝑥
(

0, 𝑃 (𝑡 = 𝑗, 𝑟 = 𝑘) − 𝑃𝑠1 ,𝑠0 (𝑟 = 𝑘, 𝑦 = 1 − 𝑙)
)

= 𝑚𝑎𝑥
(

0, 𝑃𝑠1 ,𝑠0 (𝑟 = 𝑘, 𝑦 = 𝑙) − 𝑃 (𝑡 = 1 − 𝑗, 𝑟 = 𝑘)
)

(E.3)

where the final line of (E.3) follows from Lemma 1. □

Claim 2. Bounds (E.2) on 𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 𝑗, 𝑦 = 𝑗) and 𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 1 − 𝑗, 𝑦 = 𝑗) are sharp. Bounds are independent in the sense that
any pair of points within the two bounds is attainable.

Proof. Write all eight joint and observable probabilities as a matrix equation:

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐀

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑃𝑠1 ,𝑠0 (𝑡 = 1, 𝑟 = 1, 𝑦 = 1)
𝑃𝑠1 ,𝑠0 (𝑡 = 1, 𝑟 = 1, 𝑦 = 0)
𝑃𝑠1 ,𝑠0 (𝑡 = 0, 𝑟 = 1, 𝑦 = 1)
𝑃𝑠1 ,𝑠0 (𝑡 = 0, 𝑟 = 1, 𝑦 = 0)
𝑃𝑠1 ,𝑠0 (𝑡 = 1, 𝑟 = 0, 𝑦 = 1)
𝑃𝑠1 ,𝑠0 (𝑡 = 1, 𝑟 = 0, 𝑦 = 0)
𝑃𝑠1 ,𝑠0 (𝑡 = 0, 𝑟 = 0, 𝑦 = 1)
𝑃𝑠1 ,𝑠0 (𝑡 = 0, 𝑟 = 0, 𝑦 = 0)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑃 (𝑡 = 1, 𝑟 = 1)
𝑃𝑠1 ,𝑠0 (𝑟 = 1, 𝑦 = 1)
𝑃 (𝑡 = 0, 𝑟 = 1)

𝑃𝑠1 ,𝑠0 (𝑟 = 1, 𝑦 = 0)
𝑃 (𝑡 = 1, 𝑟 = 0)

𝑃𝑠1 ,𝑠0 (𝑟 = 0, 𝑦 = 1)
𝑃 (𝑡 = 0, 𝑟 = 0)

𝑃𝑠1 ,𝑠0 (𝑟 = 0, 𝑦 = 0)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.
(E.4)

Matrix 𝐀 has rank 6. The bottom four rows cannot be represented as a linear combination using any of the top four rows. The bottom
four rows are only mutually linearly dependent. Similarly, the top four rows are only mutually linearly dependent. Therefore, the
value of 𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 1 − 𝑘, 𝑦 = 𝑙) does not affect the values of 𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 𝑘, 𝑦 = 𝑙) for (𝑗, 𝑙) ∈ {0, 1}2 within their respective
bounds.

There exist two separate systems of equations, one for each value of 𝑟. Focus on one system for an arbitrary 𝑟 = 𝑘:

⎛

⎜

⎜

⎜

⎜

⎝

1 1 0 0
1 0 1 0
0 0 1 1
0 1 0 1

⎞

⎟

⎟

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐀′

⎛

⎜

⎜

⎜

⎜

⎝

𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 𝑘, 𝑦 = 𝑗)
𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 𝑘, 𝑦 = 1 − 𝑗)
𝑃𝑠1 ,𝑠0 (𝑡 = 1 − 𝑗, 𝑟 = 𝑘, 𝑦 = 𝑗)

𝑃𝑠1 ,𝑠0 (𝑡 = 1 − 𝑗, 𝑟 = 𝑘, 𝑦 = 1 − 𝑗)

⎞

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎝

𝑃 (𝑡 = 𝑗, 𝑟 = 𝑘)
𝑃𝑠1 ,𝑠0 (𝑟 = 𝑘, 𝑦 = 𝑗)
𝑃 (𝑡 = 1 − 𝑗, 𝑟 = 𝑘)

𝑃𝑠1 ,𝑠0 (𝑟 = 𝑘, 𝑦 = 1 − 𝑗)

⎞

⎟

⎟

⎟

⎟

⎠

.
(E.5)

Matrix 𝐀′ has rank 3. I first show that both the upper and lower bounds on any of the joint probabilities 𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 𝑘, 𝑦 = 𝑙)
in (E.5) are attainable for (𝑗, 𝑙) ∈ {0, 1}2.20 Then, I demonstrate that any value in the interior of the bounds is attainable, proving
that bounds on 𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 𝑘, 𝑦 = 𝑙) are sharp. Focus on 𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 𝑘, 𝑦 = 𝑗). Assume that it is equal to its upper bound,
𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 𝑘, 𝑦 = 𝑗) = 𝑚𝑖𝑛

(

𝑃 (𝑡 = 𝑗, 𝑟 = 𝑘), 𝑃𝑠1 ,𝑠0 (𝑟 = 𝑘, 𝑦 = 𝑗)
)

. Let first 𝑃 (𝑡 = 𝑗, 𝑟 = 𝑘) < 𝑃𝑠1 ,𝑠0 (𝑟 = 𝑘, 𝑦 = 𝑗). From Lemma 1,

20 Attainable (or equivalently feasible) is meant in the sense that it is consistent with the observed distribution 𝑃 (𝑡, 𝑟) and assumed values for (𝑠 , 𝑠 ).
1 0
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𝑃𝑠1 ,𝑠0 (𝑟 = 𝑘, 𝑦 = 1 − 𝑗) < 𝑃 (𝑡 = 1 − 𝑗, 𝑟 = 𝑘). Then from (E.5):

𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 𝑘, 𝑦 = 𝑗) = 𝑃 (𝑡 = 𝑗, 𝑟 = 𝑘)

𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 𝑘, 𝑦 = 1 − 𝑗) = 0

𝑃𝑠1 ,𝑠0 (𝑡 = 1 − 𝑗, 𝑟 = 𝑘, 𝑦 = 𝑗) = 𝑃𝑠1 ,𝑠0 (𝑟 = 𝑘, 𝑦 = 𝑗) − 𝑃 (𝑡 = 𝑗, 𝑟 = 𝑘)

𝑃𝑠1 ,𝑠0 (𝑡 = 1 − 𝑗, 𝑟 = 𝑘, 𝑦 = 1 − 𝑗) = 𝑃𝑠1 ,𝑠0 (𝑟 = 𝑘, 𝑦 = 1 − 𝑗).

(E.6)

By assumption, 𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 𝑘, 𝑦 = 𝑗) is equal to its upper bound. Consequently, 𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 𝑘, 𝑦 = 1 − 𝑗) is equal
o 0 = 𝑚𝑎𝑥(0, 𝑃𝑠1 ,𝑠0 (𝑟 = 𝑘, 𝑦 = 1 − 𝑗) − 𝑃 (𝑡 = 1 − 𝑗, 𝑟 = 𝑘)) which is its lower bound. Similarly, 𝑃𝑠1 ,𝑠0 (𝑡 = 1 − 𝑗, 𝑟 = 𝑘, 𝑦 =
) = 𝑃𝑠1 ,𝑠0 (𝑟 = 𝑘, 𝑦 = 𝑗) − 𝑃 (𝑡 = 𝑗, 𝑟 = 𝑘) = 𝑚𝑎𝑥(0, 𝑃𝑠1 ,𝑠0 (𝑟 = 𝑘, 𝑦 = 𝑗) − 𝑃 (𝑡 = 𝑗, 𝑟 = 𝑘)), which is its lower bound. Finally,
𝑠1 ,𝑠0 (𝑡 = 1− 𝑗, 𝑟 = 𝑘, 𝑦 = 1− 𝑗) = 𝑃𝑠1 ,𝑠0 (𝑟 = 𝑘, 𝑦 = 1− 𝑗) = 𝑚𝑖𝑛(𝑃 (𝑡 = 1− 𝑗, 𝑟 = 𝑘), 𝑃𝑠1 ,𝑠0 (𝑟 = 𝑘, 𝑦 = 1− 𝑗)), representing the upper bound.

All four probabilities achieve their corresponding upper and lower bounds.
Let now 𝑃 (𝑡 = 𝑗, 𝑟 = 𝑘) ≥ 𝑃𝑠1 ,𝑠0 (𝑟 = 𝑘, 𝑦 = 𝑗), or equivalently 𝑃𝑠1 ,𝑠0 (𝑟 = 𝑘, 𝑦 = 1 − 𝑗) ≥ 𝑃 (𝑡 = 1 − 𝑗, 𝑟 = 𝑘). The system then is:

𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 𝑘, 𝑦 = 𝑗) = 𝑃𝑠1 ,𝑠0 (𝑟 = 𝑘, 𝑦 = 𝑗)

𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 𝑘, 𝑦 = 1 − 𝑗) = 𝑃 (𝑡 = 𝑗, 𝑟 = 𝑘) − 𝑃𝑠1 ,𝑠0 (𝑟 = 𝑘, 𝑦 = 𝑗)

𝑃𝑠1 ,𝑠0 (𝑡 = 1 − 𝑗, 𝑟 = 𝑘, 𝑦 = 𝑗) = 0

𝑃𝑠1 ,𝑠0 (𝑡 = 1 − 𝑗, 𝑟 = 𝑘, 𝑦 = 1 − 𝑗) = 𝑃 (𝑡 = 1 − 𝑗, 𝑟 = 𝑘).

(E.7)

As before, 𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 𝑘, 𝑦 = 𝑗) and 𝑃𝑠1 ,𝑠0 (𝑡 = 1 − 𝑗, 𝑟 = 𝑘, 𝑦 = 1 − 𝑗) are equal to their respective upper bounds.
𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 𝑘, 𝑦 = 1 − 𝑗) and 𝑃𝑠1 ,𝑠0 (𝑡 = 1 − 𝑗, 𝑟 = 𝑘, 𝑦 = 𝑗) attain the lower bounds. That 𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 𝑘, 𝑦 = 𝑗) and
𝑃𝑠1 ,𝑠0 (𝑡 = 1 − 𝑗, 𝑟 = 𝑘, 𝑦 = 1 − 𝑗) attain lower bounds when 𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 𝑘, 𝑦 = 1 − 𝑗) and 𝑃𝑠1 ,𝑠0 (𝑡 = 1 − 𝑗, 𝑟 = 𝑘, 𝑦 = 𝑗) are
equal to their upper bounds can be shown symmetrically. Thus, for an arbitrary 𝑟 = 𝑘, all probabilities can be equal to their upper
and lower bounds.

From (E.5), reducing any probability that is on the upper bound will lead to an increase in the probabilities at lower bounds and
a decrease in the remaining probability at the upper bound. Any value in the interior of the bounds must be feasible. Therefore, the
bounds (E.1) must be sharp for 𝑃 (𝑡 = 𝑗, 𝑟 = 𝑘, 𝑦 = 𝑙) and any (𝑗, 𝑙) ∈ {0, 1}2. This is true for an arbitrary 𝑟 = 𝑘, hence the bounds are
sharp for any 𝑃 (𝑡 = 𝑗, 𝑟 = 𝑘, 𝑦 = 𝑙) such that (𝑗, 𝑘, 𝑙) ∈ {0, 1}3.

Finally, from (E.4), the value which 𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 𝑗, 𝑦 = 𝑗) takes does not influence the value of 𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 1 − 𝑗, 𝑦 = 𝑗).
Any pair of values coming from the Cartesian product of the bounds on the two probabilities is feasible. □

By Claim 2, the sharp bounds on 𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑦 = 1) = 𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 𝑗, 𝑦 = 𝑗) + 𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 1 − 𝑗, 𝑦 = 𝑗) are a sum of the sharp
bounds on individual probabilities. Hence, the sharp bounds on 𝜃𝑗 are:

𝜃𝑗 ≥
𝑚𝑎𝑥

(

0, 𝑃 (𝑡 = 𝑗, 𝑟 = 𝑗) − 𝑃𝑠1 ,𝑠0 (𝑟 = 𝑗, 𝑦 = 1 − 𝑗)
)

𝑃𝑠1 ,𝑠0 (𝑦 = 𝑗)

+
𝑚𝑎𝑥

(

0, 𝑃𝑠1 ,𝑠0 (𝑟 = 1 − 𝑗, 𝑦 = 𝑗) − 𝑃 (𝑡 = 1 − 𝑗, 𝑟 = 1 − 𝑗)
)

𝑃𝑠1 ,𝑠0 (𝑦 = 𝑗)

𝜃𝑗 ≤
𝑚𝑖𝑛

(

𝑃 (𝑡 = 𝑗, 𝑟 = 1 − 𝑗), 𝑃𝑠1 ,𝑠0 (𝑟 = 1 − 𝑗, 𝑦 = 𝑗)
)

+ 𝑚𝑖𝑛
(

𝑃 (𝑡 = 𝑗, 𝑟 = 𝑗), 𝑃𝑠1 ,𝑠0 (𝑟 = 𝑗, 𝑦 = 𝑗)
)

𝑃𝑠1 ,𝑠0 (𝑦 = 𝑗)

(E.8)

Claim 3. The sharp joint identified set for (𝜃1, 𝜃0) is:

(𝜃1 ,𝜃0)(𝑠1, 𝑠0) =

{

(𝑡1, 𝑡0) ∶ 𝑡0 = 𝑡1
𝑃𝑠1 ,𝑠0 (𝑦 = 1)
𝑃𝑠1 ,𝑠0 (𝑦 = 0)

+ 1 −
𝑃 (𝑡 = 1)

𝑃𝑠1 ,𝑠0 (𝑦 = 0)
, 𝑡1 ∈ 𝜃𝑗 (𝑠1, 𝑠0)

}

.

roof.
𝑃 (𝑡 = 1) = 𝑃𝑠1 ,𝑠0 (𝑡 = 1, 𝑦 = 1) + 𝑃𝑠1 ,𝑠0 (𝑡 = 1, 𝑦 = 0) =

= 𝜃1𝑃𝑠1 ,𝑠0 (𝑦 = 1) + 𝑃𝑠1 ,𝑠0 (𝑦 = 0) − 𝜃0𝑃𝑠1 ,𝑠0 (𝑦 = 0).
(E.9)

et 𝑗 = 1 without loss of generality. For any value 𝑡1 ∈ 𝜃1 (𝑠1, 𝑠0), it must be that 𝑡0𝑃𝑠1 ,𝑠0 (𝑦 = 0) = 𝑡1𝑃𝑠1 ,𝑠0 (𝑦 = 1)+𝑃𝑠1 ,𝑠0 (𝑦 = 0)−𝑃 (𝑡 =
). Since 𝜃1 (𝑠1, 𝑠0) is sharp, (𝜃1 ,𝜃0)(𝑠1, 𝑠0) is a sharp joint identification region for (𝜃1, 𝜃0). □

roposition 2. Let 𝜃𝐿𝑗 be as in (7). When the index and reference tests have a tendency to wrongly agree only for 𝑦 = 𝑗, the sharp bounds
n 𝜃𝑗 given (𝑠1, 𝑠0) are ̄𝜃𝑗 (𝑠1, 𝑠0) =

[

𝜃𝐿𝑗 , 𝜃̄
𝑈
𝑗

]

, where:

𝜃̄𝑈𝑗 =

[

𝑚𝑖𝑛
(

𝑃 (𝑡 = 𝑗, 𝑟 = 1 − 𝑗),
𝑃𝑠1 ,𝑠0 (𝑟 = 1 − 𝑗, 𝑦 = 𝑗)

2

)

+ 𝑚𝑖𝑛
(

𝑃 (𝑡 = 𝑗, 𝑟 = 𝑗), 𝑃𝑠1 ,𝑠0 (𝑟 = 𝑗, 𝑦 = 𝑗)
)

]

1 .

(8)
𝑃𝑠1 ,𝑠0 (𝑦 = 𝑗)
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If the index and reference tests have a tendency to wrongly agree for 𝑦 = 0 and 𝑦 = 1, the sharp bounds on 𝜃𝑗 for 𝑗 = 0, 1 given (𝑠1, 𝑠0) are
̄̄
𝜃𝑗 (𝑠1, 𝑠0) =

[

𝜃𝐿𝑗 ,
̄̄𝜃𝑈𝑗

]

, where:

̄̄𝜃𝑈𝑗 =

[

𝑚𝑖𝑛
(

𝑃 (𝑡 = 𝑗, 𝑟 = 1 − 𝑗),
𝑃𝑠1 ,𝑠0 (𝑟 = 1 − 𝑗, 𝑦 = 𝑗)

2

)

+ 𝑚𝑖𝑛
(

𝑃 (𝑡 = 𝑗, 𝑟 = 𝑗) −
𝑃𝑠1 ,𝑠0 (𝑟 = 𝑗, 𝑦 = 1 − 𝑗)

2
, 𝑃𝑠1 ,𝑠0 (𝑟 = 𝑗, 𝑦 = 𝑗)

)

]

1
𝑃𝑠1 ,𝑠0 (𝑦 = 𝑗)

.

(9)

Sharp joint identified sets ̄(𝜃1 ,𝜃0)(𝑠1, 𝑠0) and
̄̄(𝜃1 ,𝜃0)(𝑠1, 𝑠0) for (𝜃1, 𝜃0) given (𝑠1, 𝑠0) follow from (6), ̄𝜃𝑗 (𝑠1, 𝑠0), and

̄̄𝜃𝑗 (𝑠1, 𝑠0).

Proof of Proposition 2. First, I prove a lemma used below. The proof then follows through a series of claims.

Lemma 5. The index test has a tendency to wrongly agree with the reference test for 𝑦 = 𝑗 for a given (𝑠1, 𝑠0), if and only if

𝑠1 ,𝑠0 (𝑡 = 1 − 𝑗, 𝑟 = 1 − 𝑗, 𝑦 = 𝑗) ≥
𝑃𝑠1 ,𝑠0 (𝑟=1−𝑗,𝑦=𝑗)

2 .

Proof. It holds that 𝑃𝑠1 ,𝑠0 (𝑡 = 1 − 𝑗, 𝑟 = 1 − 𝑗, 𝑦 = 𝑗) + 𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 1 − 𝑗, 𝑦 = 𝑗) = 𝑃 (𝑟 = 1 − 𝑗, 𝑦 = 𝑗). For sufficiency, note that
𝑃𝑠1 ,𝑠0 (𝑡 = 1−𝑗, 𝑟 = 1−𝑗, 𝑦 = 𝑗) = 𝑃𝑠1 ,𝑠0 (𝑟 = 1−𝑗, 𝑦 = 𝑗)−𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 1−𝑗, 𝑦 = 𝑗)+𝑃𝑠1 ,𝑠0 (𝑡 = 1−𝑗, 𝑟 = 1−𝑗, 𝑦 = 𝑗) ≥ 𝑃𝑠1 ,𝑠0 (𝑟 = 1−𝑗, 𝑦 = 𝑗),

since by assumption 𝑃𝑠1 ,𝑠0 (𝑡 = 1 − 𝑗, 𝑟 = 1 − 𝑗, 𝑦 = 𝑗) ≥ 𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 1 − 𝑗, 𝑦 = 𝑗). Necessity is immediate. □

Claim 4. Assume that the tests have a tendency to wrongly agree only for 𝑦 = 𝑗. The sharp identified set for (𝜃1, 𝜃0) is ̄(𝜃1 ,𝜃0)(𝑠1, 𝑠0).

Proof. From Lemma 5, 𝑃𝑠1 ,𝑠0 (𝑡 = 1−𝑗, 𝑟 = 1−𝑗, 𝑦 = 𝑗) ≥
𝑃𝑠1 ,𝑠0 (𝑟=1−𝑗,𝑦=𝑗)

2 . Then, 𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 1−𝑗, 𝑦 = 𝑗) ≤
𝑃𝑠1 ,𝑠0 (𝑟=1−𝑗,𝑦=𝑗)

2 ≤ 𝑃𝑠1 ,𝑠0 (𝑟 =
1 − 𝑗, 𝑦 = 𝑗). Using this and following the steps taken to obtain (E.2):

𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 1 − 𝑗, 𝑦 = 𝑗) ≤ 𝑚𝑖𝑛
(

𝑃 (𝑡 = 𝑗, 𝑟 = 1 − 𝑗),
𝑃𝑠1 ,𝑠0 (𝑟 = 1 − 𝑗, 𝑦 = 𝑗)

2

)

. (E.10)

The lower bound on 𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 1 − 𝑗, 𝑦 = 𝑗) is derived from the upper bound on 𝑃𝑠1 ,𝑠0 (𝑡 = 1 − 𝑗, 𝑟 = 1 − 𝑗, 𝑦 = 𝑗) which is
unaffected by the assumption. Substituting the upper bound into the system (E.5) yields the lower bound 𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 1 − 𝑗, 𝑦 =
𝑗) ≥ max

(

0, 𝑃𝑠1 ,𝑠0 (𝑟 = 1 − 𝑗, 𝑦 = 𝑗) − 𝑃 (𝑡 = 1 − 𝑗, 𝑟 = 1 − 𝑗)
)

, as in (E.3).
For the bounds defined by (E.3) and (E.10) on 𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 1−𝑗, 𝑦 = 𝑗) to be sharp, all values contained between them must be

feasible for a given population distribution. The lower bound is identical as in Proposition 1. The upper bound in (E.10) is at most
as large as the upper bound (E.2) in Proposition 1. Thus, all points in the bounds on 𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 1− 𝑗, 𝑦 = 𝑗) are attainable by the
same argument as in Claim 2 in the proof of Proposition 1. Hence, the bounds defined by (E.3) and (E.10) are sharp. Sharp bounds
on probabilities 𝑃𝑠1 ,𝑠0 (𝑡 = 𝑘, 𝑟 = 𝑗, 𝑦 = 𝑙) from (E.1) are unaffected by the assumption for (𝑘, 𝑙) ∈ {0, 1}2 as they form an independent
system of equations from (E.4). Using the reasoning in Claims 2, and 3 of Proposition 1, ̄(𝜃1 ,𝜃0)(𝑠1, 𝑠0) is a sharp identification region
for (𝜃1, 𝜃0). □

Claim 5. Assume that the tests have a tendency to wrongly agree for 𝑦 = 0 and 𝑦 = 1. The sharp identified set for (𝜃1, 𝜃0) is ̄̄(𝜃1 ,𝜃0)(𝑠1, 𝑠0).

Proof. By Lemma 5, 𝑃𝑠1 ,𝑠0 (𝑡 = 1−𝑗, 𝑟 = 1−𝑗, 𝑦 = 𝑗) ≥
𝑃𝑠1 ,𝑠0 (𝑟=1−𝑗,𝑦=𝑗)

2 for 𝑗 ∈ {0, 1}. The sharp upper bound on 𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 1−𝑗, 𝑦 = 𝑗)
is again as in (E.10). The sharp upper bound on 𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 𝑗, 𝑦 = 𝑗) is no longer equivalent to (E.2). Analogously to the steps
used to derive (E.10):

𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 𝑗, 𝑦 = 𝑗) ≤ 𝑚𝑖𝑛
(

𝑃 (𝑡 = 𝑗, 𝑟 = 𝑗) −
𝑃𝑠1 ,𝑠0 (𝑟 = 𝑗, 𝑦 = 1 − 𝑗)

2
, 𝑃𝑠1 ,𝑠0 (𝑟 = 𝑗, 𝑦 = 𝑗)

)

, (E.11)

where the first value in the minimum is derived using Lemma 5 and:

𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 𝑗, 𝑦 = 𝑗) = 𝑃 (𝑡 = 𝑗, 𝑟 = 𝑗) − 𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 𝑗, 𝑦 = 1 − 𝑗)

≤ 𝑃 (𝑡 = 𝑗, 𝑟 = 𝑗) −
𝑃𝑠1 ,𝑠0 (𝑟 = 𝑗, 𝑦 = 1 − 𝑗)

2
.

(E.12)

Remark 17. Only the upper bounds on 𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 1 − 𝑗, 𝑦 = 𝑗) and 𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 𝑗, 𝑦 = 𝑗) are changed by the assumption that
tests have a tendency to wrongly agree for 𝑦 ∈ {0, 1}. The lower bounds remain as in (E.3).

To see this, observe from (E.4) that the bounds on 𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 1 − 𝑗, 𝑦 = 𝑗) and 𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 𝑗, 𝑦 = 𝑗) belong to separate
systems of equations and will not affect each other. The bounds on 𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 1 − 𝑗, 𝑦 = 𝑗) hold as in Claim 4. The bounds on
𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 𝑗, 𝑦 = 𝑗) are derived using 𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 𝑗, 𝑦 = 1 − 𝑗) which is affected only from below by the assumption. From
(E.5) it can be seen that substituting 𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 𝑗, 𝑦 = 1 − 𝑗) with its upper bound min

(

𝑃 (𝑡 = 𝑗, 𝑟 = 𝑗), 𝑃𝑠1 ,𝑠0 (𝑟 = 𝑗, 𝑦 = 1 − 𝑗)
)

yields an identical lower bound for 𝑃 (𝑡 = 𝑗, 𝑟 = 𝑗, 𝑦 = 𝑗) as in (E.3).
𝑠1 ,𝑠0
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Bounds (E.3) and (E.10) on 𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 1− 𝑗, 𝑦 = 𝑗) were shown to be sharp in the previous claim. Using the same argument,
bounds (E.3) and (E.11) on 𝑃𝑠1 ,𝑠0 (𝑡 = 𝑗, 𝑟 = 𝑗, 𝑦 = 𝑗) are also sharp. Any pair of points in the bounds for the two probabilities is
easible. Hence, ̄̄(𝜃1 ,𝜃0)(𝑠1, 𝑠0) is the sharp identified set for (𝜃1, 𝜃0). □

Proposition 3. Suppose that Assumption 4 holds and the population is screened only using 𝑡. Let (𝜃1 ,𝜃0)(𝑠1, 𝑠0) be a known sharp identified
set from Proposition 1 or Proposition 2. Denote by 𝜃𝐿𝑗 and 𝜃𝑈𝑗 the smallest and largest values of 𝜃𝑗 in (𝜃1 ,𝜃0)(𝑠1, 𝑠0). The sharp bounds on
prevalence 𝑄(𝑦 = 1) are:

𝑄(𝑦 = 1) ∈ 𝛱𝑠1 ,𝑠0 ∶=

[

min

{

𝑄(𝑡 = 1) + 𝜃𝐿0 − 1

𝜃𝐿1 + 𝜃𝐿0 − 1
,
𝑄(𝑡 = 1) + 𝜃𝑈0 − 1

𝜃𝑈1 + 𝜃𝑈0 − 1

}

,

max

{

𝑄(𝑡 = 1) + 𝜃𝐿0 − 1

𝜃𝐿1 + 𝜃𝐿0 − 1
,
𝑄(𝑡 = 1) + 𝜃𝑈0 − 1

𝜃𝑈1 + 𝜃𝑈0 − 1

} ]

∩ [0, 1]

(13)

when ∀(𝜃1, 𝜃0) ∈ (𝜃1 ,𝜃0)(𝑠1, 𝑠0) ∶ 𝜃1 ≠ 1 − 𝜃0, and 𝑄(𝑦 = 1) ∈ [0, 1] otherwise.

Proof of Proposition 3. The proof proceeds in two steps. First we show that the bounds are valid. For sharpness, we consider an
arbitrary point in the bounds. We then construct a distribution consistent with the assumptions that generates the point, and that
is observationally equivalent to the data. The data alone identify only 𝑄(𝑡 = 1).

We study two distinct cases.
Case 1: ∀(𝜃1, 𝜃0) ∈ (𝜃1 ,𝜃0)(𝑠1, 𝑠0) ∶ 𝜃1 ≠ 1 − 𝜃0
The bounds on 𝑄(𝑦 = 1) can be imposed as:

𝑄(𝑦 = 1) =
𝑄(𝑡 = 1) + 𝜏0 − 1

𝜏1 + 𝜏0 − 1

∈

[

min
(𝜃1 ,𝜃0)∈(𝜃1 ,𝜃0)(𝑠1 ,𝑠0)

𝑄(𝑡 = 1) + 𝜃0 − 1
𝜃1 + 𝜃0 − 1

, max
(𝜃1 ,𝜃0)∈(𝜃1 ,𝜃0)(𝑠1 ,𝑠0)

𝑄(𝑡 = 1) + 𝜃0 − 1
𝜃1 + 𝜃0 − 1

]

∩ [0, 1]

here the first line follows by (12), and the second by Assumption 4. The intersection with [0, 1] is added by definition 𝑄(𝑦 = 1)
nd the fact that 𝑄(𝑡=1)+𝜃0−1

𝜃1+𝜃0−1
∉ [0, 1] if and only if (𝜃1, 𝜃0) are such that 𝑄(𝑡 = 1) ∉

[

min(𝜃1, 1 − 𝜃0),max(𝜃1, 1 − 𝜃0)
]

, which is possible.
The expression 𝑄(𝑡=1)+𝜃0−1

𝜃1+𝜃0−1
is increasing in 𝜃0 and decreasing in 𝜃1. We will show that it attains extrema at the end-points of the line

egment (𝜃1 ,𝜃0)(𝑠1, 𝑠0). By Propositions 1 and 2, for any (𝜃1, 𝜃0) ∈ (𝜃1 ,𝜃0)(𝑠1, 𝑠0):

𝜃0 = 1 − 𝑎 + 𝜃1𝑏 (E.13)

for known constants 𝑎 and 𝑏 ∈ (0,∞). Given that (𝜃1 ,𝜃0)(𝑠1, 𝑠0) ⊂ [0, 1]2 is a line segment, it is a connected set. By assumption it does
not contain (𝜃1, 𝜃0) such that 𝜃1 + 𝜃0 = 1, therefore it does not intersect the negatively-sloped diagonal of the unit rectangle. Thus,
all (𝜃1, 𝜃0) ∈ (𝜃1 ,𝜃0)(𝑠1, 𝑠0) are such that either 𝜃1 + 𝜃0 > 1 or 𝜃1 + 𝜃0 < 1. By (E.13), for all 𝜃1 in the identified set we have either
1(𝑏 + 1) > 𝑎 or 𝜃1(𝑏 + 1) < 𝑎, so 𝜃1(𝑏 + 1) ≠ 𝑎. For any (𝜃1, 𝜃0) ∈ (𝜃1 ,𝜃0)(𝑠1, 𝑠0) we can then write:

𝑄(𝑡 = 1) + 𝜃0 − 1
𝜃1 + 𝜃0 − 1

=
𝑄(𝑡 = 1) + 𝜃1𝑏 − 𝑎

𝜃1(𝑏 + 1) − 𝑎
. (E.14)

First derivative of (E.14) with respect to 𝜃1 is 𝑎−(𝑏+1)𝑄(𝑡=1)
(𝑎−(𝑏+1)𝜃1)2

which has the same sign for all 𝜃1 in the identified set. If (and only
if) 𝑎 = (𝑏 + 1)𝑄(𝑡 = 1), the expression is a constant function of 𝜃1.21 When 𝑎 > (𝑏 + 1)𝑄(𝑡 = 1), it is minimized at 𝜃𝐿1 and maximized
at 𝜃𝑈1 . Conversely, if 𝑎 < (𝑏 + 1)𝑄(𝑡 = 1), the expression is minimized at 𝜃𝑈1 and maximized at 𝜃𝐿1 . By (E.13) and 𝑏 > 0, 𝜃𝐿1 and 𝜃𝑈1
correspond to 𝜃𝐿0 and 𝜃𝑈0 in (𝜃1 ,𝜃0)(𝑠1, 𝑠0), respectively, showing that 𝛱𝑠1 ,𝑠0 are valid bounds for 𝑄(𝑦 = 1).

To show sharpness, pick an arbitrary point 𝜋 ∈ 𝛱𝑠1 ,𝑠0 . We demonstrate that one can construct a distribution 𝑄(𝑡, 𝑦) such that: (𝑖) it
consistent with the observed data 𝑄(𝑡 = 1); (𝑖𝑖) 𝑄(𝑦 = 1) = 𝜋; (𝑖𝑖𝑖) it is consistent with the assumptions (𝑄(𝑡 = 1|𝑦 = 1), 𝑄(𝑡 = 0|𝑦 = 0)) =
(𝜃1, 𝜃0) ∈ (𝜃1 ,𝜃0)(𝑠1, 𝑠0). All marginals of the distribution 𝑄(𝑡, 𝑦) are completely determined by observational data and 𝜋. To complete
the proof, we only need to appropriately specify the dependence structure (𝜃1, 𝜃0) such that it is feasible, i.e. in the identified set
for the parameters.

If Assumption 4 holds, (𝑄(𝑡 = 1|𝑦 = 1), 𝑄(𝑡 = 0|𝑦 = 0)) ∈ (𝜃1 ,𝜃0)(𝑠1, 𝑠0), so 𝛱𝑠1 ,𝑠0 ≠ ∅. Denote then by 𝛱𝑠1 ,𝑠0 = [𝜋𝐿, 𝜋𝑈 ] ∩ [0, 1].

Consider the case where 𝜋𝐿 =
𝑄(𝑡=1)+𝜃𝐿0 −1

𝜃𝐿1 +𝜃
𝐿
0 −1

≤
𝑄(𝑡=1)+𝜃𝑈0 −1

𝜃𝑈1 +𝜃𝑈0 −1
= 𝜋𝑈 . The converse case

𝑄(𝑡=1)+𝜃𝐿0 −1

𝜃𝐿1 +𝜃
𝐿
0 −1

>
𝑄(𝑡=1)+𝜃𝑈0 −1

𝜃𝑈1 +𝜃𝑈0 −1
follows a symmetric

rgument. Let 𝜃𝛽1 = 𝛽𝜃𝐿1 + (1 − 𝛽)𝜃𝑈1 for any 𝛽 ∈ [0, 1]. Define:

𝜋𝛽 =
𝑄(𝑡 = 1) + 𝜃𝛽1 𝑏 − 𝑎

𝜃𝛽1 (𝑏 + 1) − 𝑎
=

𝛽
(

𝑄(𝑡 = 1) + 𝜃𝐿1 𝑏 − 𝑎
)

+ (1 − 𝛽)
(

𝑄(𝑡 = 1) + 𝜃𝑈1 𝑏 − 𝑎
)

𝛽
(

𝜃𝐿1 (𝑏 + 1) − 𝑎
)

+ (1 − 𝛽)
(

𝜃𝑈1 (𝑏 + 1) − 𝑎
)

= 𝜋𝐿
𝛽
(

𝜃𝐿1 (𝑏 + 1) − 𝑎
)

𝛽
(

𝜃𝐿1 (𝑏 + 1) − 𝑎
)

+ (1 − 𝛽)
(

𝜃𝑈1 (𝑏 + 1) − 𝑎
) + 𝜋𝑈

(1 − 𝛽)
(

𝜃𝑈1 (𝑏 + 1) − 𝑎
)

𝛽
(

𝜃𝐿1 (𝑏 + 1) − 𝑎
)

+ (1 − 𝛽)
(

𝜃𝑈1 (𝑏 + 1) − 𝑎
)

(E.15)

21 Note that this is equivalent to prevalence being point identified. Expressions for 𝑎 and 𝑏 in (6) reveal that this happens if only if 𝑃 (𝑡 = 1) in the performance

opulation equals 𝑄(𝑡 = 1) in the screened population.
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where the second line follows by (E.14) and definition of 𝜋𝐿 and 𝜋𝑈 . Since 𝜋 ∈ [𝜋𝐿, 𝜋𝑈 ], then ∃𝛼 ∈ [0, 1] 𝜋 = 𝛼𝜋𝐿 + (1 − 𝛼)𝜋𝑈 . We
can define:

𝛽 =
𝛼
(

𝜃𝑈1 (𝑏 + 1) − 𝑎
)

𝛼
(

𝜃𝑈1 (𝑏 + 1) − 𝑎
)

+ (1 − 𝛼)
(

𝜃𝐿1 (𝑏 + 1) − 𝑎
) ∈ [0, 1]. (E.16)

For 𝛽 in (E.16), we have 𝜋𝛽 = 𝜋. Then let (𝜃𝛽1 , 𝜃
𝛽
0 ) = 𝛽(𝜃𝐿1 , 𝜃

𝐿
0 ) + (1 − 𝛽)(𝜃𝑈1 , 𝜃

𝑈
0 ). Since (𝜃𝛽1 , 𝜃

𝛽
0 ) is a linear combination of endpoints

of a line segment, it must also be an element of the line segment. Hence (𝜃𝛽1 , 𝜃
𝛽
0 ) ∈ (𝜃1 ,𝜃0)(𝑠1, 𝑠0), proving that for any 𝜋 ∈ 𝛱𝑠1 ,𝑠0 we

can construct 𝑄(𝑡, 𝑦) such that it is consistent with the observed data and assumptions, with 𝑄(𝑦 = 1) = 𝜋. Hence 𝛱𝑠1 ,𝑠0 is sharp.
Case 2: ∃(𝜃1, 𝜃0) ∈ (𝜃1 ,𝜃0)(𝑠1, 𝑠0) ∶ 𝜃1 + 𝜃0 = 1
Fix (𝜃1, 𝜃0) ∈ (𝜃1 ,𝜃0) ∶ 𝜃1 + 𝜃0 = 1. Then 𝑄(𝑡 = 1|𝑦 = 1) = 𝑄(𝑡 = 1|𝑦 = 0), so 𝑡 ⟂⟂ 𝑦 is consistent with Assumption 4. Hence

𝑄(𝑦 = 1) ∈ [0, 1] is consistent with any observed 𝑄(𝑡 = 1). Sharpness is also immediate since for an arbitrary point 𝜋 ∈ [0, 1], we can
fix (𝜃1, 𝜃0) ∈ (𝜃1 ,𝜃0) ∶ 𝜃1 + 𝜃0 = 1 and define 𝑄(𝑡, 𝑦) with 𝑄(𝑡, 𝑦 = 1) = 𝑄(𝑡)𝜋 and 𝑄(𝑡, 𝑦 = 0) = 𝑄(𝑡)(1 − 𝜋) for any 𝑄(𝑡). Thus, there
exists a distribution 𝑄(𝑡, 𝑦) which is consistent with 𝑄(𝑡 = 1), (𝜃1, 𝜃0) ∈ (𝜃1 ,𝜃0) and 𝑄(𝑦 = 1) = 𝜋.

Proposition 4. Assume that the index and reference tests have a tendency to wrongly agree only for 𝑦 = 1. Let the moment function 𝑚̄1

be:

𝑚̄1(𝑊𝑖, 𝜃) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑚̄1
1(𝑊𝑖, 𝜃)

𝑚̄1
2(𝑊𝑖, 𝜃)

𝑚̄1
3(𝑊𝑖, 𝜃)

𝑚̄1
4(𝑊𝑖, 𝜃)

𝑚̄1
5(𝑊𝑖, 𝜃)

𝑚̄1
6(𝑊𝑖, 𝜃)

𝑚̄1
7(𝑊𝑖, 𝜃)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(−𝜃1 + 𝑠1)
𝑟𝑖−1+𝑠0
𝑠1−1+𝑠0

+ (𝑡𝑖 − 1)𝑟𝑖

(−𝜃1 + 1 − 𝑠1)
𝑟𝑖−1+𝑠0
𝑠1−1+𝑠0

+ (𝑟𝑖 − 1)(1 − 𝑡𝑖)

(−𝜃1 + 1) 𝑟𝑖−1+𝑠0𝑠1−1+𝑠0
+ (𝑡𝑖 − 1)

𝜃1
𝑟𝑖−1+𝑠0
𝑠1−1+𝑠0

− 𝑡𝑖

(𝜃1 − 𝑠1)
𝑟𝑖−1+𝑠0
𝑠1−1+𝑠0

− 𝑡𝑖(1 − 𝑟𝑖)
(

𝜃1 +
−1+𝑠1

2

)

𝑟𝑖−1+𝑠0
𝑠1−1+𝑠0

− 𝑡𝑖𝑟𝑖

(𝜃0 − 1)(1 − 𝑟𝑖−1+𝑠0
𝑠1−1+𝑠0

) − 𝜃1
𝑟𝑖−1+𝑠0
𝑠1−1+𝑠0

+ 𝑡𝑖

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (18)

oment inequalities and equalities defined by 𝑚̄1 for 𝐽1 = {1,… , 6} and 𝐽2 = {7} represent the joint identification region Θ(𝑃 ) =

(𝑠1 ,𝑠0)∈

(

̄(𝜃1 ,𝜃0)(𝑠1, 𝑠0)×{(𝑠1, 𝑠0)}
)

for ̄(𝜃1 ,𝜃0)(𝑠1, 𝑠0) defined in Proposition 2 for 𝑦 = 1. For each 𝜃 ∈
⋃

(𝑠1 ,𝑠0)∈ [0,
1+𝑠1
2 ]×[0, 1]×{(𝑠1, 𝑠0)}

such that 𝐸𝑃
(

𝑚̄1
𝑗 (𝑊𝑖, 𝜃)

)

≤ 0 for j=1,…,6 and 𝐸𝑃
(

𝑚̄1
7(𝑊𝑖, 𝜃)

)

= 0, it must be that 𝜃 ∈ Θ(𝑃 ). Conversely, if 𝜃 ∈ Θ(𝑃 ), then
𝐸𝑃

(

𝑚̄1
𝑗 (𝑊𝑖, 𝜃)

)

≤ 0 for j=1,…,6 and 𝐸𝑃
(

𝑚̄1
7(𝑊𝑖, 𝜃)

)

= 0.

Proof of Proposition 4. The proof is analogous to the proof of Proposition 5. From the definition of ̄𝜃1 (𝑠1, 𝑠0) for 𝑦 = 1 in
Proposition 2:

𝜃1𝑃𝑠1 ,𝑠0 (𝑦 = 1) ≥ 𝑚𝑎𝑥
(

0, 𝑃 (𝑡 = 1, 𝑟 = 1) − 𝑃𝑠1 ,𝑠0 (𝑟 = 1, 𝑦 = 0)
)

+ 𝑚𝑎𝑥
(

0, 𝑃𝑠1 ,𝑠0 (𝑟 = 0, 𝑦 = 1) − 𝑃 (𝑡 = 0, 𝑟 = 0)
)

𝜃1𝑃𝑠1 ,𝑠0 (𝑦 = 1) ≤ 𝑚𝑖𝑛
(

𝑃 (𝑡 = 1, 𝑟 = 0),
𝑃𝑠1 ,𝑠0 (𝑟 = 0, 𝑦 = 1)

2

)

+ 𝑚𝑖𝑛
(

𝑃 (𝑡 = 1, 𝑟 = 1), 𝑃𝑠1 ,𝑠0 (𝑟 = 1, 𝑦 = 1)
)

.

(E.17)

Suppose that 𝐸𝑃
(

𝑚̄1
𝑗 (𝑊𝑖, 𝜃)

)

≤ 0 for 𝑗 = 1, 2… , 6 and 𝐸𝑃
(

𝑚̄1
7(𝑊𝑖, 𝜃)

)

= 0. From (18):

𝐸𝑃
(

𝑚̄1
6(𝑊𝑖, 𝜃)

)

=
(

𝜃1 +
−1 + 𝑠1

2

)

𝑃𝑠1 ,𝑠0 (𝑦 = 1) − 𝑃 (𝑡 = 1, 𝑟 = 1)

= 𝜃1𝑃𝑠1 ,𝑠0 (𝑦 = 1) −
𝑃𝑠1 ,𝑠0 (𝑟 = 0, 𝑦 = 1)

2
− 𝑃 (𝑡 = 1, 𝑟 = 1) ≤ 0

(E.18)

Using 𝐸𝑃
(

𝑚̄1
𝑗 (𝑊𝑖, 𝜃)

)

= 𝐸𝑃
(

𝑚𝑗 (𝑊𝑖, 𝜃)
)

for 𝑗 = 1,… , 5, 𝐸𝑃
(

𝑚̄1
7(𝑊𝑖, 𝜃)

)

= 𝐸𝑃
(

𝑚7(𝑊𝑖, 𝜃)
)

, (E.48), (E.50), (E.52), and (E.18), yields that
𝐸𝑃

(

𝑚̄1
𝑗 (𝑊𝑖, 𝜃)

)

≤ 0 for j=1,…,7 and 𝐸𝑃
(

𝑚̄1
7(𝑊𝑖, 𝜃)

)

= 0 represent the joint identification region Θ(𝑃 ) =
⋃

(𝑠1 ,𝑠0)∈

(

̄(𝜃1 ,𝜃0)(𝑠1, 𝑠0) ×

{(𝑠1, 𝑠0)}
)

by the same argument as in the proof of Proposition 5.

Theorem 1. Suppose that Assumptions 1, 2A, 3, and 5 hold. Then for any component 𝑚𝑗 (𝑊𝑖, 𝜃) in (18), (B.1), (B.3), and (B.4):

1. 𝑉 𝑎𝑟𝑃 (𝑚𝑗 (𝑊𝑖, 𝜃)) > 0 and for all 𝑃 ∈ 𝐏 and 𝜃 ∈ [0, 1]2 × ;

2. lim sup𝜆←←←←←←←←←→∞ sup𝑃∈𝐏 sup𝜃∈Θ(𝑃 ) 𝐸𝑃

[

(

𝑚𝑗 (𝑊𝑖 ,𝜃)−𝜇𝑗 (𝜃,𝑃 )
𝜎𝑗 (𝜃,𝑃 )

)2
1

{

|

|

|

|

𝑚𝑗 (𝑊𝑖 ,𝜃)−𝜇𝑗 (𝜃,𝑃 )
𝜎𝑗 (𝜃,𝑃 )

|

|

|

|

> 𝜆
}

]

= 0;
here 𝜇𝑗 (𝜃, 𝑃 ) = 𝐸𝑃 (𝑚𝑗 (𝑊𝑖, 𝜃)) and 𝜎𝑗 (𝜃, 𝑃 ) = 𝑉 𝑎𝑟𝑃 (𝑚𝑗 (𝑊𝑖, 𝜃)).
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Proof of Theorem 1. I first show that under the assumptions 𝑉 𝑎𝑟𝑃 (𝑚𝑗 (𝑊𝑖, 𝜃)) >
1

𝑀2
𝑗
> 0, for any 𝑗 ∈ 1,… , 7 in (B.1), where 𝑀𝑗 do

not depend on 𝑃 and 𝜃. I then demonstrate the same for components (18), (B.3), and (B.4) that are not identical. Finally, I show
that 𝑚𝑗 (𝑊𝑖, 𝜃) are bounded irrespective of 𝑃 and 𝜃, and use that to prove that the second claim is true.

Let 𝜌𝑃 (𝑋, 𝑌 ) = 𝐶𝑜𝑣𝑃 (𝑋,𝑌 )
√

𝑉 𝑎𝑟𝑃 (𝑋)𝑉 𝑎𝑟𝑃 (𝑌 )
for some binary random vector (𝑋, 𝑌 ) with distribution 𝑃 ∈ 𝐏. The following Lemma will be used

o bound the variances from below.

emma 6. Suppose that Assumption 5 holds. Then for any 𝑃 ∈ 𝐏, the following are true:

1. max𝑃∈𝐏 𝜌𝑃 (𝑟𝑖, 𝑡𝑖)2 = (1 − 4𝜀)2 < 1;
2. max𝑃∈𝐏 𝜌𝑃 (𝑟𝑖, (1 − 𝑡𝑖))2 = (1 − 4𝜀)2 < 1;
3. max𝑃∈𝐏 𝜌𝑃 (𝑟𝑖, 𝑟𝑖𝑡𝑖)2 = ℎ(𝜀);
4. max𝑃∈𝐏 𝜌𝑃 (𝑟𝑖, (1 − 𝑟𝑖)𝑡𝑖)2 = ℎ(𝜀)
5. max𝑃∈𝐏 𝜌𝑃 (𝑟𝑖, 𝑟𝑖(1 − 𝑡𝑖))2 = ℎ(𝜀)
6. max𝑃∈𝐏 𝜌𝑃 (𝑟𝑖, (1 − 𝑟𝑖)(1 − 𝑡𝑖))2 = ℎ(𝜀)

where ℎ(𝜀) = 1{𝜀 ∈ [0.2, 0.25]} 2−6𝜀
3−6𝜀 + 1{𝜀 ∈ (0, 0.2)} (1−𝜀)2

(1+𝜀)2 ∈ (0, 1).

Proof. Denote 𝑃 (𝑡𝑖 = 𝑗, 𝑟𝑖 = 𝑘) = 𝑃𝑗𝑘. Assumption 5 states that for (𝑗, 𝑘) ∈ {0, 1}2, 𝑃𝑗𝑘 ≥ 𝜀 > 0, and implies that 𝜀 ≤ 1
4 .

Statements 1 and 2
Parameter 𝜌𝑃 (𝑟𝑖, 𝑡𝑖)2 is the largest when either 𝑃01 = 𝑃10 = 𝜀 or 𝑃11 = 𝑃00 = 𝜀. I prove the statement for 𝑃01 = 𝑃10 = 𝜀, and the

rgument for the 𝑃11 = 𝑃00 = 𝜀 is symmetric. The maximal 𝜌𝑃 (𝑟𝑖, 𝑡𝑖)2 must then be for 𝑃11 + 𝑃00 = 1 − 2𝜀 and 𝑃 (𝑡𝑖 = 1) = 𝑃 (𝑟𝑖 = 1).
Next, let 𝑃11 = 𝛼(1 − 2𝜀), 𝑃00 = (1 − 𝛼)(1 − 2𝜀) for some 𝛼 ∈ [ 𝜀

1−2𝜀 ,
1−3𝜀
1−2𝜀 ], and 𝑃 (𝑡𝑖 = 1) = 𝑃 (𝑟𝑖 = 1) = 𝛼(1 − 2𝜀) + 𝜀. By plugging in

he relevant probabilities, 𝜌𝑃 (𝑟𝑖, 𝑡𝑖) becomes a function of 𝛼:

𝜌𝛼(𝑟𝑖, 𝑡𝑖) =
𝑃11 − 𝑃 (𝑡𝑖 = 1)𝑃 (𝑟𝑖 = 1)

√

𝑃 (𝑡𝑖 = 1)(1 − 𝑃 (𝑡𝑖 = 1))𝑃 (𝑟𝑖 = 1)(1 − 𝑃 (𝑟𝑖 = 1))
=

=
𝛼(1 − 2𝜀) − (𝛼(1 − 2𝜀) + 𝜀)2

(𝛼(1 − 2𝜀) + 𝜀) (1 − 𝛼(1 − 2𝜀) − 𝜀)
.

(E.19)

Since we are considering the case 𝑃01 = 𝑃10 = 𝜀, the correlation is positive. By maximizing 𝜌𝛼(𝑟𝑖, 𝑡𝑖) with respect to 𝛼, we obtain
the upper bound on 𝜌𝑃 (𝑟𝑖, 𝑡𝑖)2. The second order condition confirms that this is a concave optimization problem. The first order
ondition yields the maximizing 𝛼∗ = 1

2 .
For any 𝜀 ≤ 1

4 , it is true that 𝛼∗ ∈ [ 𝜀
1−2𝜀 ,

1−3𝜀
1−2𝜀 ]. To conclude the proof of statement 1, plug in 𝛼∗ into (E.19) to find

max𝑃∈𝐏 𝜌𝑃 (𝑟𝑖, 𝑡𝑖) = 𝜌𝛼∗ (𝑟𝑖, 𝑡𝑖) = (1 − 4𝜀).
By using Statement 1 and replacing 𝑡𝑖 = 1−𝑡𝑖, it follows directly that max𝑃∈𝐏 𝜌𝑃 (𝑟𝑖, (1 − 𝑡𝑖)) = max𝑃∈𝐏 𝜌𝑃 (𝑟𝑖, 𝑡𝑖) = 𝜌𝛼∗ (𝑟𝑖, 𝑡𝑖) = (1−4𝜀).
Statement 3
From the definition of 𝜌𝑃 (𝑟𝑖, 𝑟𝑖𝑡𝑖):

𝜌𝑃 (𝑟𝑖, 𝑟𝑖𝑡𝑖) =
𝐶𝑜𝑣𝑃 (𝑟𝑖, 𝑡𝑖𝑟𝑖)

√

𝑉 𝑎𝑟𝑃 (𝑟𝑖)𝑉 𝑎𝑟𝑃 (𝑡𝑖𝑟𝑖)
=

𝐸𝑃 (𝑡𝑖𝑟𝑖)(1 − 𝐸𝑃 (𝑟𝑖))
√

𝐸𝑃 (𝑟𝑖)(1 − 𝐸𝑃 (𝑟𝑖))𝐸𝑃 (𝑡𝑖𝑟𝑖)(1 − 𝐸𝑃 (𝑡𝑖𝑟𝑖))

=

√

𝐸𝑃 (𝑡𝑖𝑟𝑖)(1 − 𝐸𝑃 (𝑟𝑖))
𝐸𝑃 (𝑟𝑖)(1 − 𝐸𝑃 (𝑡𝑖𝑟𝑖))

=

√

𝑃11(1 − 𝑃 (𝑟𝑖 = 1))
𝑃 (𝑟𝑖 = 1)(1 − 𝑃11)

=

√

𝑃11(1 − 𝑃11 − 𝑃01)
(𝑃11 + 𝑃01)(1 − 𝑃11)

.

(E.20)

otice that 𝜌𝑃 (𝑟𝑖, 𝑟𝑖𝑡𝑖) decreases in 𝑃01, so at the maximum, 𝑃01 = 𝜀. Therefore, we only need to maximize 𝜌𝑃 (𝑟𝑖, 𝑟𝑖𝑡𝑖)2 with respect
o feasible 𝑃11. The maximization problem is:

max
𝑃∈𝐏

𝜌𝑃 (𝑟𝑖, 𝑟𝑖𝑡𝑖) = max
𝑃11∈[𝜀,1−3𝜀]

√

𝑃11(1 − 𝑃11 − 𝜀)
(𝑃11 + 𝜀)(1 − 𝑃11)

. (E.21)

The objective function is concave. The first order condition implies that for an interior maximum, the maximizing 𝑃11 is 1−𝜀
2 . If

𝜀 ∈ [0.2, 0.25], the constraint 𝑃11 ≤ 1−3𝜀 will bind. Therefore, the value of the parameter at the maximum is 𝑃 ∗
11 = min

{

1−𝜀
2 , 1 − 3𝜀

}

.
The maximum of the objective function obtained by plugging in 𝑃 ∗

11 into (E.20) is:

max
𝑃∈𝐏

𝜌𝑃 (𝑟𝑖, 𝑟𝑖𝑡𝑖)2 = 1{𝜀 ∈ [0.2, 0.25]}
(

1 − 1
3 − 6𝜀

)

+ 1{𝜀 ∈ (0, 0.2)}
(1 − 𝜀)2

(1 + 𝜀)2
∈ (0, 1) (E.22)

Statements 4, 5, and 6
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Following the definition of 𝜌𝑃 (𝑟𝑖, (1 − 𝑟𝑖)𝑡𝑖):

𝜌𝑃 (𝑟𝑖, (1 − 𝑟𝑖)𝑡𝑖) =
𝐶𝑜𝑣𝑃 (𝑟𝑖, (1 − 𝑟𝑖)𝑡𝑖)

√

𝑉 𝑎𝑟𝑃 (𝑟𝑖)𝑉 𝑎𝑟𝑃 ((1 − 𝑟𝑖)𝑡𝑖)

=
−𝐸𝑃 (𝑟𝑖)𝐸𝑃 ((1 − 𝑟𝑖)𝑡𝑖)

√

𝐸𝑃 (𝑟𝑖)(1 − 𝐸𝑃 (𝑟𝑖))𝐸𝑃 ((1 − 𝑟𝑖)𝑡𝑖)(1 − 𝐸𝑃 ((1 − 𝑟𝑖)𝑡𝑖))

= −

√

𝐸𝑃 (𝑟𝑖)𝐸𝑃 ((1 − 𝑟𝑖)𝑡𝑖)
(1 − 𝐸𝑃 (𝑟𝑖))(1 − 𝐸𝑃 ((1 − 𝑟𝑖)𝑡𝑖))

= −

√

𝑃 (𝑟𝑖 = 1)𝑃10
(1 − 𝑃 (𝑟𝑖 = 1))(1 − 𝑃10)

.

(E.23)

The square of the correlation is increasing in both 𝑃 (𝑟𝑖 = 1) = 𝑃11 + 𝑃01 and 𝑃10. Consequently, at the maximum, together they will
be at the upper bound, meaning that 𝑃11 + 𝑃01 + 𝑃10 = 1 − 𝜀, or equivalently, that 𝑃 (𝑟𝑖 = 1) = 1 − 𝜀 − 𝑃10. We can then rewrite the
roblem as:

max
𝑃∈𝐏

𝜌𝑃 (𝑟𝑖, (1 − 𝑟𝑖)𝑡𝑖)
2 = max

𝑃10∈[𝜀,1−3𝜀]

(1 − 𝜀 − 𝑃10)𝑃10
(𝜀 + 𝑃10)(1 − 𝑃10)

. (E.24)

In this form, the problem is identical to the one in (E.21). Following the same steps:

max
𝑃∈𝐏

𝜌𝑃 (𝑟𝑖, (1 − 𝑟𝑖)𝑡𝑖)2 = 1{𝜀 ∈ [0.2, 0.25]}
(

1 − 1
3 − 6𝜀

)

+ 1{𝜀 ∈ (0, 0.2)}
(1 − 𝜀)2

(1 + 𝜀)2
< 1. (E.25)

Analogously to the proof of Statement 3, for 𝜌(𝑟𝑖, (1 − 𝑡𝑖)𝑟𝑖)2 in Statement 5, the optimization problem can be represented as:

max
𝑃∈𝐏

𝜌𝑃 (𝑟𝑖, 𝑟𝑖(1 − 𝑡𝑖))
2 = max

𝑃01∈[𝜀,1−3𝜀]

(1 − 𝜀 − 𝑃01)𝑃01
(𝜀 + 𝑃01)(1 − 𝑃01)

. (E.26)

Following the steps in the proof of Statement 4, 𝜌(𝑟𝑖, (1 − 𝑟𝑖)(1 − 𝑡𝑖))2 in Statement 6, the optimization problem will be:

max
𝑃∈𝐏

𝜌𝑃 (𝑟𝑖, (1 − 𝑟𝑖)𝑡𝑖)
2 = max

𝑃10∈[𝜀,1−3𝜀]

(1 − 𝜀 − 𝑃00)𝑃00
(𝜀 + 𝑃00𝑃 )(1 − 𝑃00)

. (E.27)

Consequently, from the solutions to (E.21) and (E.23), (E.26) and (E.27) will yield the same upper bounds on their corresponding
squares of correlations:

max
𝑃∈𝐏

𝜌𝑃 (𝑟𝑖, 𝑟𝑖(1 − 𝑡𝑖))
2 = max

𝑃∈𝐏
𝜌𝑃 (𝑟𝑖, (1 − 𝑟𝑖)𝑡𝑖)

2

= 1{𝜀 ∈ [0.2, 0.25]}
(

1 − 1
3 − 6𝜀

)

+ 1{𝜀 ∈ (0, 0.2)}
(1 − 𝜀)2

(1 + 𝜀)2
.

□ (E.28)

laim 6. For any 𝑃 ∈ 𝐏 and 𝜃 ∈ [0, 1]2 ×  it holds that 𝑉 𝑎𝑟𝑃 (𝑚𝑗 (𝑊𝑖, 𝜃)) > 0 for all 𝑚𝑗 (𝑊𝑖, 𝜃) in (B.1).

roof. Consider first a component of 𝑚 pertaining to the upper bound of 𝜃1. The variance 𝑉 𝑎𝑟𝑃 (𝑚4(𝑊𝑖, 𝜃)) for some 𝜃 and 𝑃 is
efined as:

𝑉 𝑎𝑟𝑃 (𝑚4(𝑊𝑖, 𝜃)) = 𝑉 𝑎𝑟𝑃

(

𝜃1
𝑟𝑖 − 1 + 𝑠0
𝑠1 − 1 + 𝑠0

− 𝑡𝑖

)

=
(

𝜃1
𝑠1 − 1 + 𝑠0

)2
𝑉 𝑎𝑟𝑃 (𝑟𝑖) + 𝑉 𝑎𝑟𝑃 (𝑡𝑖) − 2

𝜃1
𝑠1 − 1 + 𝑠0

𝐶𝑜𝑣𝑃 (𝑟𝑖, 𝑡𝑖).
(E.29)

Fix any (𝑠1, 𝑠0) ∈ . As discussed in Section 2.4, Assumptions 2A and 3 imply 𝑃 (𝑟 = 1) ∈ (1 − 𝑠0, 𝑠1) so 𝑉 𝑎𝑟𝑃 (𝑟𝑖) > 0. The value 𝜃∗1
here 𝑉 𝑎𝑟𝑃 (𝑚4(𝑊𝑖, 𝜃)) is globally minimized given 𝑠1 and 𝑠0 from the first order condition is:

𝜕𝑉 𝑎𝑟𝑃 (𝑚4(𝑊𝑖, 𝜃))
𝜕𝜃1

∶ 𝜃∗1 = (𝑠1 − 1 + 𝑠0)
𝐶𝑜𝑣𝑃 (𝑟𝑖, 𝑡𝑖)
𝑉 𝑎𝑟𝑃 (𝑟𝑖)

. (E.30)

The second order condition shows that this indeed is a minimization problem. Let 𝜃∗ = (𝜃∗1 , 𝜃0, 𝑠1, 𝑠0), where I suppress the
dependence 𝜃∗1 (𝑠1, 𝑠0) for clarity. The minimum variance for any (𝑠1, 𝑠0) ∈  is then:

𝑉 𝑎𝑟𝑃 (𝑚4(𝑊𝑖, 𝜃
∗)) =

(𝐶𝑜𝑣𝑃 (𝑟𝑖, 𝑡𝑖))2

𝑉 𝑎𝑟𝑃 (𝑟𝑖)
+ 𝑉 𝑎𝑟𝑃 (𝑡𝑖) − 2

(𝐶𝑜𝑣𝑃 (𝑟𝑖, 𝑡𝑖))2

𝑉 𝑎𝑟𝑃 (𝑟𝑖)
= 𝑉 𝑎𝑟𝑃 (𝑡𝑖)

(

1 − 𝜌𝑃 (𝑟𝑖, 𝑡𝑖)2
)

.
(E.31)

For any 𝜃 it follows:

𝑉 𝑎𝑟𝑃 (𝑚4(𝑊𝑖, 𝜃)) ≥ 𝑉 𝑎𝑟𝑃 (𝑚4(𝑊𝑖, 𝜃
∗)) = 𝑉 𝑎𝑟𝑃 (𝑡𝑖)

(

1 − 𝜌𝑃 (𝑟𝑖, 𝑡𝑖)2
)

≥ 2𝜀(1 − 2𝜀)
(

1 − (1 − 4𝜀)2
)

= 1
2
> 0 (E.32)
𝑀4
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where the first inequality follows from the definition of 𝜃∗. Focus on the second inequality. We wish to find the lower bound on
he variance 1

𝑀2
4

over all possible 𝑃 ∈ 𝐏. One such bound is equal to the expression at the smallest value of 𝑉 𝑎𝑟𝑃 (𝑡𝑖) and the

argest value of 𝜌𝑃 (𝑟𝑖, 𝑡𝑖)2. The second is given by Lemma 6, and the first follows directly from Assumption 5 which implies that
(𝑡𝑖 = 1) ∈ [2𝜀, 1 − 2𝜀], so 𝑉 𝑎𝑟𝑃 (𝑡𝑖) ≥ 2𝜀(1 − 2𝜀).22 Therefore, 𝑉 𝑎𝑟𝑃 (𝑚4(𝑊𝑖, 𝜃)) ≥

1
𝑀2

4
> 0 for all 𝑃 ∈ 𝐏 and 𝜃 ∈ [0, 1]2 × .

Following the same steps for the remaining components pertaining to the upper bound, the smallest variances for any 𝑃 ∈ 𝐏 and
𝜃 are:

𝑉 𝑎𝑟𝑃 (𝑚5(𝑊𝑖, 𝜃
∗)) = 𝑉 𝑎𝑟𝑃 (𝑡𝑖(1 − 𝑟𝑖))

(

1 − 𝜌𝑃 (𝑟𝑖, 𝑡𝑖(1 − 𝑟𝑖))2
)

≥ 𝜀(1 − 𝜀) (1 − ℎ(𝜀)) = 1
𝑀2

5

> 0

𝑉 𝑎𝑟𝑃 (𝑚6(𝑊𝑖, 𝜃
∗)) = 𝑉 𝑎𝑟𝑃 (𝑡𝑖𝑟𝑖)

(

1 − 𝜌𝑃 (𝑟𝑖, 𝑡𝑖𝑟𝑖)2
)

≥ 𝜀(1 − 𝜀) (1 − ℎ(𝜀)) = 1
𝑀2

6

> 0
(E.33)

where the inequalities follow from the definition of 𝜃∗, the fact that 𝑉 𝑎𝑟𝑃 (𝑡𝑖(1 − 𝑟𝑖)) ≥ 𝜀(1 − 𝜀) and 𝑉 𝑎𝑟𝑃 (𝑡𝑖(1 − 𝑟𝑖)) ≥ 𝜀(1 − 𝜀), and
emma 6.

Next observe the components pertaining to the lower bound. First for 𝑉 𝑎𝑟𝑃 (𝑚1(𝑊𝑖, 𝜃)) for any 𝜃 and 𝑃 :

𝑉 𝑎𝑟𝑃 (𝑚1(𝑊𝑖, 𝜃)) = 𝑉 𝑎𝑟𝑃

(

(−𝜃1 + 𝑠1)
𝑟𝑖 − 1 + 𝑠0
𝑠1 − 1 + 𝑠0

+ (𝑡𝑖 − 1)𝑟𝑖

)

=
(

𝑠1 − 𝜃1
𝑠1 − 1 + 𝑠0

)2
𝑉 𝑎𝑟𝑃 (𝑟𝑖) + 𝑉 𝑎𝑟𝑃 ((𝑡𝑖 − 1)𝑟𝑖) − 2

𝑠1 − 𝜃1
𝑠1 − 1 + 𝑠0

𝐶𝑜𝑣𝑃 ((1 − 𝑡𝑖)𝑟𝑖, 𝑟𝑖)
(E.34)

Fix an arbitrary 𝑠1 and 𝑠0. The value 𝜃∗1 where 𝑉 𝑎𝑟𝑃 (𝑚1(𝑊𝑖, 𝜃)) is globally minimized given 𝑠1 and 𝑠0 from the first order condition
is:

𝜕𝑉 𝑎𝑟𝑃 (𝑚1(𝑊𝑖, 𝜃))
𝜕𝜃1

∶ 𝜃∗1 = (𝑠1 − 1 + 𝑠0)
𝐶𝑜𝑣𝑃 ((1 − 𝑡𝑖)𝑟𝑖, 𝑟𝑖)

𝑉 𝑎𝑟𝑃 (𝑟𝑖)
+ 𝑠1. (E.35)

The second order condition shows that this indeed is a minimization problem. The minimum variance 𝑉 𝑎𝑟𝑃 (𝑚1(𝑊𝑖, 𝜃∗)) for an
rbitrary (𝑠1, 𝑠0) ∈  is:

𝑉 𝑎𝑟𝑃 (𝑚1(𝑊𝑖, 𝜃
∗)) =

(

−
𝐶𝑜𝑣𝑃 ((1 − 𝑡𝑖)𝑟𝑖, 𝑟𝑖)

𝑉 𝑎𝑟𝑃 (𝑟𝑖)

)2
𝑉 𝑎𝑟𝑃 (𝑟𝑖) + 𝑉 𝑎𝑟𝑃 ((1 − 𝑡𝑖)𝑟𝑖)

− 2
(

𝐶𝑜𝑣𝑃 ((1 − 𝑡𝑖)𝑟𝑖, 𝑟𝑖)
𝑉 𝑎𝑟𝑃 (𝑟𝑖)

)

𝐶𝑜𝑣𝑃 ((1 − 𝑡𝑖)𝑟𝑖, 𝑟𝑖)

= 𝑉 𝑎𝑟𝑃 ((1 − 𝑡𝑖)𝑟𝑖)
(

1 −
(𝐶𝑜𝑣𝑃 ((1 − 𝑡𝑖)𝑟𝑖, 𝑟𝑖)2

𝑉 𝑎𝑟𝑃 (𝑟𝑖)𝑉 𝑎𝑟𝑃 ((1 − 𝑡𝑖)𝑟𝑖)

)

= 𝑉 𝑎𝑟𝑃 ((1 − 𝑡𝑖)𝑟𝑖)
(

1 − 𝜌𝑃 ((1 − 𝑡𝑖)𝑟𝑖, 𝑟𝑖)2
)

≥ 𝜀(1 − 𝜀)(1 − ℎ(𝜀)) = 1
𝑀2

1

> 0

(E.36)

where the first inequality follows from the definition of 𝜃∗. And the second follows from Lemma 6 and 𝑉 𝑎𝑟𝑃 (𝑡𝑖𝑟𝑖) ≥ 𝜀(1−𝜀). Therefore
𝑉 𝑎𝑟𝑃 (𝑚1(𝑊𝑖, 𝜃)) ≥

1
𝑀2

1
> 0 for all 𝑃 ∈ 𝐏 and 𝜃 ∈ [0, 1]2 × .

Again, following the same steps for the remaining components pertaining to the lower bound, the smallest variances for any
∈ 𝐏 and 𝜃 are:

𝑉 𝑎𝑟𝑃 (𝑚2(𝑊𝑖, 𝜃
∗)) = 𝑉 𝑎𝑟𝑃 ((1 − 𝑡𝑖)(1 − 𝑟𝑖))

(

1 − 𝜌𝑃 (𝑟𝑖, (1 − 𝑡𝑖)(1 − 𝑟𝑖))2
)

≥ 𝜀(1 − 𝜀) (1 − ℎ(𝜀)) = 1
𝑀2

2

> 0

𝑉 𝑎𝑟𝑃 (𝑚3(𝑊𝑖, 𝜃
∗)) = 𝑉 𝑎𝑟𝑃 (1 − 𝑡𝑖)

(

1 − 𝜌𝑃 (𝑟𝑖, (1 − 𝑡𝑖))2
)

≥ 2𝜀(1 − 2𝜀)
(

1 − (1 − 4𝜀)2
)

= 1
𝑀2

3

> 0

(E.37)

Finally, consider the component pertaining to the moment equality 𝑉 𝑎𝑟(𝑚7(𝑊𝑖, 𝜃)). It is defined as:

𝑉 𝑎𝑟𝑃 (𝑚7(𝑊𝑖, 𝜃)) = 𝑉 𝑎𝑟𝑃

(

(1 − 𝜃0)
(

1 −
𝑟𝑖 − 1 + 𝑠0
𝑠1 − 1 + 𝑠0

)

+ 𝜃1
𝑟𝑖 − 1 + 𝑠0
𝑠1 − 1 + 𝑠0

− 𝑡𝑖

)

= 𝑉 𝑎𝑟𝑃

(

(𝜃0 + 𝜃1 − 1)
𝑟𝑖 − 1 + 𝑠0
𝑠1 − 1 + 𝑠0

− 𝑡𝑖

)

= 𝑉 𝑎𝑟𝑃

(

𝜃̄
𝑟𝑖 − 1 + 𝑠0
𝑠1 − 1 + 𝑠0

− 𝑡𝑖

)

=
(

𝜃̄
𝑠1 − 1 + 𝑠0

)2
𝑉 𝑎𝑟𝑃 (𝑟𝑖) + 𝑉 𝑎𝑟𝑃 (𝑡𝑖) − 2 𝜃̄

𝑠1 − 1 + 𝑠0
𝐶𝑜𝑣𝑃 (𝑟𝑖, 𝑡𝑖)

(E.38)

for 𝜃1 + 𝜃0 − 1 = 𝜃̄. Notice how the function (E.38) resembles (E.29). Following the same steps as for finding 1
𝑀2

4
, we obtain that

𝑉 𝑎𝑟(𝑚7(𝑊𝑖, 𝜃)) ≥ 2𝜀(1 − 2𝜀)
(

1 − (1 − 4𝜀)2
)

= 1
𝑀2

7
> 0 for all 𝑃 ∈ 𝐏 and 𝜃 ∈ [0, 1]2 × . □

22 As long as 𝜀 < 0.25, the inequality is strict, since the largest value of 𝜌𝑃 (𝑟𝑖 , 𝑡𝑖)2 warrants that 𝑃 (𝑡𝑖 = 1, 𝑟𝑖 = 1) = 1−2𝜀
2

while the smallest 𝑉 𝑎𝑟𝑃 (𝑡𝑖) requires
(𝑡 = 1, 𝑟 = 1) = 𝜀 or 𝑃 (𝑡 = 1, 𝑟 = 1) = 1 − 3𝜀.
𝑖 𝑖 𝑖 𝑖

30 



F. Obradović

f

F

T

Journal of Econometrics 244 (2024) 105842 
Claim 7. For any 𝑃 ∈ 𝐏 and 𝜃 ∈ [0, 1]2 ×  it holds that 𝑉 𝑎𝑟𝑃 (𝑚𝑗 (𝑊𝑖, 𝜃)) > 0 for all 𝑚𝑗 (𝑊𝑖, 𝜃) in (18), (B.3), and (B.4).

Proof. Functions 𝑚̄ and 𝑚 are such that 𝑚̄1
𝑗 (𝑊𝑖, 𝜃) ≠ 𝑚𝑗 (𝑊𝑖, 𝜃) only if 𝑗 = 6. Thus for all components that are equal, the proof follows

rom Claim 6, so 𝑉 𝑎𝑟𝑃 (𝑚̄1
𝑗 (𝑊𝑖, 𝜃)) ≥

1
𝑀2

𝑗
> 0 for 𝑗 ≠ 6.

The variance 𝑉 𝑎𝑟𝑃 (𝑚̄1
6(𝑊𝑖, 𝜃)) for some 𝜃 and 𝑃 is:

𝑉 𝑎𝑟𝑃 (𝑚̄1
6(𝑊𝑖, 𝜃)) = 𝑉 𝑎𝑟𝑃

(

(

𝜃1 +
−1 + 𝑠1

2

) 𝑟𝑖 − 1 + 𝑠0
𝑠1 − 1 + 𝑠0

− 𝑡𝑖𝑟𝑖

)

=
⎛

⎜

⎜

⎝

𝜃1 +
−1+𝑠1

2
𝑠1 − 1 + 𝑠0

⎞

⎟

⎟

⎠

2

𝑉 𝑎𝑟𝑃 (𝑟𝑖) + 𝑉 𝑎𝑟𝑃 (𝑟𝑖𝑡𝑖) − 2
𝜃1 +

−1+𝑠1
2

𝑠1 − 1 + 𝑠0
𝐶𝑜𝑣𝑃 (𝑟𝑖, 𝑟𝑖𝑡𝑖).

(E.39)

ix any (𝑠1, 𝑠0) ∈ . The value 𝜃∗1 where 𝑉 𝑎𝑟𝑃 (𝑚6(𝑊𝑖, 𝜃)) is globally minimized given 𝑠1 and 𝑠0 from the first order condition is:

𝜕𝑉 𝑎𝑟𝑃 (𝑚̄1
6(𝑊𝑖, 𝜃))

𝜕𝜃1
∶ 𝜃∗1 = (𝑠1 − 1 + 𝑠0)

𝐶𝑜𝑣𝑃 (𝑟𝑖, 𝑟𝑖𝑡𝑖)
𝑉 𝑎𝑟𝑃 (𝑟𝑖)

+
1 − 𝑠1

2
. (E.40)

The second order condition shows that this indeed is a minimization problem. Following the same steps as before, for any
𝜃 ∈ [0, 1]2 × :

𝑉 𝑎𝑟𝑃 (𝐶𝑜𝑣𝑃 (𝑟𝑖, 𝑟𝑖𝑡𝑖)(𝑊𝑖, 𝜃)) ≥ 𝑉 𝑎𝑟𝑃 (𝐶𝑜𝑣𝑃 (𝑟𝑖, 𝑟𝑖𝑡𝑖)(𝑊𝑖, 𝜃
∗)) = 𝑉 𝑎𝑟𝑃 (𝑟𝑖𝑡𝑖)

(

1 − 𝜌𝑃 (𝑟𝑖, 𝑟𝑖𝑡𝑖)2
)

≥ 𝜀(1 − 𝜀) (1 − ℎ(𝜀)) = 1
𝑀2

6

> 0 (E.41)

he case for 𝑚̄0
𝑗 (𝑊𝑖, 𝜃) is symmetric, 𝑉 𝑎𝑟𝑃 (𝑚̄0

𝑗 (𝑊𝑖, 𝜃)) ≥
1

𝑀2
𝑗
> 0 for all 𝑗 = 1,… , 7, 𝑃 ∈ 𝐏 and 𝜃 ∈ [0, 1]2 × .

Likewise, for ̄̄𝑚 note that ̄̄𝑚𝑗 (𝑊𝑖, 𝜃) = 𝑚̄𝑗 (𝑊𝑖, 𝜃) except for 𝑗 ∈ {4, 6}. From (B.4):

𝑉𝑃 ( ̄̄𝑚4(𝑊𝑖, 𝜃)) = 𝑉𝑃

(

𝜃1
𝑟𝑖 − 1 + 𝑠0
𝑠1 − 1 + 𝑠0

− 𝑡𝑖 +
1
2

(

𝑟𝑖 − 𝑠1
𝑟𝑖 − 1 + 𝑠0
𝑠1 − 1 + 𝑠0

)

)

= 𝑉𝑃

((

𝜃1 −
𝑠1
2

𝑠1 − 1 + 𝑠0
+ 1

2

)

𝑟𝑖 − 𝑡𝑖

)

𝑉𝑃 ( ̄̄𝑚6(𝑊𝑖, 𝜃)) = 𝑉𝑃

(

(

𝜃1 +
−1 + 𝑠1

2

) 𝑟𝑖 − 1 + 𝑠0
𝑠1 − 1 + 𝑠0

− 𝑡𝑖𝑟𝑖 +
1
2

(

𝑟𝑖 − 𝑠1
𝑟𝑖 − 1 + 𝑠0
𝑠1 − 1 + 𝑠0

)

)

= 𝑉𝑃
⎛

⎜

⎜

⎝

⎛

⎜

⎜

⎝

𝜃1 −
1
2

𝑠1 − 1 + 𝑠0
+ 1

2

⎞

⎟

⎟

⎠

𝑟𝑖 − 𝑡𝑖𝑟𝑖
⎞

⎟

⎟

⎠

.

(E.42)

As above, for any 𝜃 ∈ [0, 1]2 × :

𝑉𝑃 ( ̄̄𝑚4(𝑊𝑖, 𝜃)) ≥ 𝑉𝑃 ( ̄̄𝑚4(𝑊𝑖, 𝜃
∗)) = 𝑉𝑃 (𝑡𝑖)

(

1 − 𝜌𝑃 (𝑟𝑖, 𝑡𝑖)2
)

≥ 2𝜀(1 − 2𝜀)
(

1 − (1 − 4𝜀)2
)

= 1
𝑀2

4

> 0

𝑉𝑃 ( ̄̄𝑚6(𝑊𝑖, 𝜃)) ≥ 𝑉𝑃 ( ̄̄𝑚6(𝑊𝑖, 𝜃
∗)) = 𝑉𝑃 (𝑡𝑖𝑟𝑖)

(

1 − 𝜌𝑃 (𝑟𝑖, 𝑡𝑖𝑟𝑖)2
)

≥ 𝜀(1 − 𝜀) (1 − ℎ(𝜀)) = 1
𝑀2

6

> 0.

(E.43)

It is true that 𝑉 𝑎𝑟𝑃 ( ̄̄𝑚0
𝑗 (𝑊𝑖, 𝜃)) ≥

1
𝑀2

𝑗
> 0 for all 𝑗 = 1,… , 7, 𝑃 ∈ 𝐏 and 𝜃 ∈ [0, 1]2 × . □

Claim 8. For any 𝑃 ∈ 𝐏, 𝜃 ∈ [0, 1]2 × , and 𝑚𝑗 (𝑊𝑖, 𝜃) in (B.1), (18), (B.3), and (B.4):

lim sup
𝜆←←←←←←←←←→∞

sup
𝑃∈𝐏

sup
𝜃∈Θ(𝑃 )

𝐸𝑃

[

(𝑚𝑗 (𝑊𝑖, 𝜃) − 𝜇𝑗 (𝜃, 𝑃 )
𝜎𝑗 (𝜃, 𝑃 )

)2

1

{

|

|

|

|

|

𝑚𝑗 (𝑊𝑖, 𝜃) − 𝜇𝑗 (𝜃, 𝑃 )
𝜎𝑗 (𝜃, 𝑃 )

|

|

|

|

|

> 𝜆

}]

= 0. (E.44)

We have shown above that for any 𝜎𝑗 (𝜃, 𝑃 ) corresponding to components 𝑚𝑗 (𝑊𝑖, 𝜃) in (B.1), (18), (B.3), and (B.4), there exists a
finite constant 𝑀𝑗 > 0 such that 𝜎𝑗 (𝜃, 𝑃 ) ≥

1
𝑀𝑗

> 0 for all 𝑃 ∈ 𝐏 and 𝜃 ∈ [0, 1]2 × .
Then for any 𝑗, 𝑃 ∈ 𝐏, 𝜃 ∈ [0, 1]2 ×  and 𝜆:

𝐸𝑃

[

𝑀2
𝑗
(

𝑚𝑗 (𝑊𝑖, 𝜃) − 𝜇𝑗 (𝜃, 𝑃 )
)2
1

{

|

|

|

𝑚𝑗 (𝑊𝑖, 𝜃) − 𝜇𝑗 (𝜃, 𝑃 )
|

|

|

> 𝜆
𝑀𝑗

}]

(E.45)

≥ 𝐸𝑃

[

(𝑚𝑗 (𝑊𝑖, 𝜃) − 𝜇𝑗 (𝜃, 𝑃 )
𝜎𝑗 (𝜃, 𝑃 )

)2

1

{

|

|

|

|

|

𝑚𝑗 (𝑊𝑖, 𝜃) − 𝜇𝑗 (𝜃, 𝑃 )
𝜎𝑗 (𝜃, 𝑃 )

|

|

|

|

|

> 𝜆

}]

≥ 0. (E.46)
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As 𝑊𝑖 = (𝑡𝑖, 𝑟𝑖) ∈ {0, 1}2, and  is a compact set such that ∀(𝑠1, 𝑠0) ∈  ∶ 𝑠1 > 1 − 𝑠0, |𝑚𝑗 (𝑊𝑖, 𝜃)| ≤ 𝐵𝑗 (𝜃) ≤ 𝐵∗
𝑗 < ∞ for each 𝑗,

here 𝐵∗
𝑗 = max𝜃∈[0,1]2× 𝐵𝑗 (𝜃). That implies that |𝜇𝑗 (𝜃, 𝑃 )| ≤ 𝐵∗

𝑗 < ∞, and (𝑚𝑗 (𝑊𝑖, 𝜃) − 𝜇𝑗 (𝜃, 𝑃 ))2 ≤ 4𝐵∗2
𝑗 . Consequently:

4𝑀2
𝑗 𝐵

∗2
𝑗1

{

2𝐵∗
𝑗 >

𝜆
𝑀𝑗

}

≥ 𝐸𝑃

[

(𝑚𝑗 (𝑊𝑖, 𝜃) − 𝜇𝑗 (𝜃, 𝑃 )
𝜎𝑗 (𝜃, 𝑃 )

)2

1

{

|

|

|

|

|

𝑚𝑗 (𝑊𝑖, 𝜃) − 𝜇𝑗 (𝜃, 𝑃 )
𝜎𝑗 (𝜃, 𝑃 )

|

|

|

|

|

> 𝜆

}]

≥ 0. (E.47)

Finally, since neither 𝐵∗
𝑗 nor 𝑀𝑗 depend on 𝑃 or 𝜃, it follows that (E.44) holds, concluding the proof.

Proposition 5. Let the moment function 𝑚 be:

𝑚(𝑊𝑖, 𝜃) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑚1(𝑊𝑖, 𝜃)

𝑚2(𝑊𝑖, 𝜃)

𝑚3(𝑊𝑖, 𝜃)

𝑚4(𝑊𝑖, 𝜃)

𝑚5(𝑊𝑖, 𝜃)

𝑚6(𝑊𝑖, 𝜃)

𝑚7(𝑊𝑖, 𝜃)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

(−𝜃1 + 𝑠1)
𝑟𝑖−1+𝑠0
𝑠1−1+𝑠0

+ (𝑡𝑖 − 1)𝑟𝑖

(−𝜃1 + 1 − 𝑠1)
𝑟𝑖−1+𝑠0
𝑠1−1+𝑠0

+ (𝑟𝑖 − 1)(1 − 𝑡𝑖)

(−𝜃1 + 1) 𝑟𝑖−1+𝑠0𝑠1−1+𝑠0
+ (𝑡𝑖 − 1)

𝜃1
𝑟𝑖−1+𝑠0
𝑠1−1+𝑠0

− 𝑡𝑖

(𝜃1 − 𝑠1)
𝑟𝑖−1+𝑠0
𝑠1−1+𝑠0

− 𝑡𝑖(1 − 𝑟𝑖)

(𝜃1 − 1 + 𝑠1)
𝑟𝑖−1+𝑠0
𝑠1−1+𝑠0

− 𝑡𝑖𝑟𝑖

(𝜃0 − 1)(1 − 𝑟𝑖−1+𝑠0
𝑠1−1+𝑠0

) − 𝜃1
𝑟𝑖−1+𝑠0
𝑠1−1+𝑠0

+ 𝑡𝑖

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (B.1)

oint identification region Θ(𝑃 ) =
⋃

(𝑠1 ,𝑠0)∈

(

(𝜃1 ,𝜃0)(𝑠1, 𝑠0) × {(𝑠1, 𝑠0)}
)

with (𝜃1 ,𝜃0)(𝑠1, 𝑠0) defined in Proposition 1 is represented by the
moment function 𝑚. For each 𝜃 ∈ [0, 1]2 ×  such that 𝐸𝑃

(

𝑚𝑗 (𝑊𝑖, 𝜃)
)

≤ 0 for j=1,…,6 and 𝐸𝑃
(

𝑚7(𝑊𝑖, 𝜃)
)

= 0, it must be that 𝜃 ∈ Θ(𝑃 ).
onversely, if 𝜃 ∈ Θ(𝑃 ), then 𝐸𝑃

(

𝑚𝑗 (𝑊𝑖, 𝜃)
)

≤ 0 for j=1,…,6 and 𝐸𝑃
(

𝑚7(𝑊𝑖, 𝜃)
)

= 0.

roof of Proposition 5. I prove this by finding 𝐸𝑃
(

𝑚𝑗 (𝑊𝑖, 𝜃)
)

for 𝑗 = 1, 2… , 7 and demonstrating that the resulting system
s equivalent to the bounds defined in Proposition 1 extended to Θ(𝑃 ) =

⋃

(𝑠1 ,𝑠0)∈

(

(𝜃1 ,𝜃0)(𝑠1, 𝑠0) × {(𝑠1, 𝑠0)}
)

. Suppose that
𝐸𝑃

(

𝑚𝑗 (𝑊𝑖, 𝜃)
)

≤ 0 for 𝑗 = 1, 2… , 6 and 𝐸𝑃
(

𝑚7(𝑊𝑖, 𝜃)
)

= 0. From (B.1):

𝐸𝑃
(

𝑚1(𝑊𝑖, 𝜃)
)

= −𝜃1𝑃𝑠1 ,𝑠0 (𝑦 = 1) + 𝑃𝑠1 ,𝑠0 (𝑟 = 1, 𝑦 = 1) − 𝑃 (𝑟 = 1) + 𝑃 (𝑡 = 1, 𝑟 = 1)

= 𝑃 (𝑡 = 1, 𝑟 = 1) − 𝑃𝑠1 ,𝑠0 (𝑟 = 1, 𝑦 = 0) − 𝜃1𝑃𝑠1 ,𝑠0 (𝑦 = 1) ≤ 0

𝐸𝑃
(

𝑚2(𝑊𝑖, 𝜃)
)

= (−𝜃1 + 1 − 𝑠1)𝑃𝑠1 ,𝑠0 (𝑦 = 1) − 𝑃 (𝑡 = 0, 𝑟 = 0)

= 𝑃𝑠1 ,𝑠0 (𝑟 = 0, 𝑦 = 1) − 𝑃 (𝑡 = 0, 𝑟 = 0) − 𝜃1𝑃𝑠1 ,𝑠0 (𝑦 = 1) ≤ 0

𝐸𝑃
(

𝑚3(𝑊𝑖, 𝜃)
)

= (−𝜃1 + 1)𝑃𝑠1 ,𝑠0 (𝑦 = 1) + 𝑃 (𝑡 = 1) − 1

= 𝑃𝑠1 ,𝑠0 (𝑦 = 1)𝑠1 − 𝑃 (𝑟 = 1) + 𝑃𝑠1 ,𝑠0 (𝑦 = 1)(1 − 𝑠1) + 𝑃 (𝑡 = 1)

− 𝑃 (𝑟 = 0) − 𝜃1𝑃𝑠1 ,𝑠0 (𝑦 = 1)

= 𝑃 (𝑡 = 1, 𝑟 = 1) − 𝑃𝑠1 ,𝑠0 (𝑟 = 1, 𝑦 = 0) + 𝑃𝑠1 ,𝑠0 (𝑟 = 0, 𝑦 = 1) − 𝑃 (𝑡 = 0, 𝑟 = 0)

− 𝜃1𝑃𝑠1 ,𝑠0 (𝑦 = 1) ≤ 0.

(E.48)

Note further that if 𝜃1 ∈ [0, 1], which is true by definition, the three inequalities above yield the lower bound from Proposition 1
for 𝜃1 ∈ 𝜃1 (𝑠1, 𝑠0) given an arbitrary (𝑠1, 𝑠0) ∈ :

𝜃1𝑃𝑠1 ,𝑠0 (𝑦 = 1) ≥ 𝑚𝑎𝑥
(

0, 𝑃 (𝑡 = 1, 𝑟 = 1) − 𝑃𝑠1 ,𝑠0 (𝑟 = 1, 𝑦 = 0)
)

+ 𝑚𝑎𝑥
(

0, 𝑃𝑠1 ,𝑠0 (𝑟 = 0, 𝑦 = 1) − 𝑃 (𝑡 = 0, 𝑟 = 0)
)

.
(E.49)

This is equivalent to the lower bound for the element 𝜃1 of (𝜃1, 𝜃0, 𝑠1, 𝑠0) ∈ Θ(𝑃 ). Consider next:

𝐸𝑃
(

𝑚4(𝑊𝑖, 𝜃)
)

= 𝜃1𝑃𝑠1 ,𝑠0 (𝑦 = 1) − 𝑃 (𝑡 = 1)

= 𝜃1𝑃𝑠1 ,𝑠0 (𝑦 = 1) − 𝑃 (𝑡 = 1, 𝑟 = 0) − 𝑃 (𝑡 = 1, 𝑟 = 1) ≤ 0

𝐸𝑃
(

𝑚5(𝑊𝑖, 𝜃)
)

= (𝜃1 − 𝑠1)𝑃𝑠1 ,𝑠0 (𝑦 = 1) − 𝑃 (𝑡 = 1, 𝑟 = 0)

= 𝜃1𝑃𝑠1 ,𝑠0 (𝑦 = 1) − 𝑃 (𝑡 = 1, 𝑟 = 0) − 𝑃𝑠1 ,𝑠0 (𝑟 = 1, 𝑦 = 1) ≤ 0

𝐸𝑃
(

𝑚6(𝑊𝑖, 𝜃)
)

= (𝜃1 − 1 + 𝑠1)𝑃𝑠1 ,𝑠0 (𝑦 = 1) − 𝑃 (𝑡 = 1, 𝑟 = 1)

= 𝜃1𝑃𝑠1 ,𝑠0 (𝑦 = 1) − 𝑃𝑠1 ,𝑠0 (𝑟 = 0, 𝑦 = 1) − 𝑃 (𝑡 = 1, 𝑟 = 1) ≤ 0

(E.50)

Similarly, the upper bound from Proposition 1 is obtained for the element 𝜃1 of (𝜃1, 𝜃0, 𝑠1, 𝑠0) ∈ Θ(𝑃 ):

𝜃1𝑃𝑠1 ,𝑠0 (𝑦 = 1) ≤ 𝑚𝑖𝑛
(

𝑃 (𝑡 = 1, 𝑟 = 0), 𝑃𝑠1 ,𝑠0 (𝑟 = 0, 𝑦 = 1)
)

+ 𝑚𝑖𝑛
(

𝑃 (𝑡 = 1, 𝑟 = 1), 𝑃 (𝑟 = 1, 𝑦 = 1)
)

.
(E.51)
𝑠1 ,𝑠0

32 



F. Obradović

𝑚

J
f

P
P

t

A

R

A

A

A

A

B
B
B

Journal of Econometrics 244 (2024) 105842 
Taking the expected value of the final component of the moment function yields:

𝐸𝑃
(

𝑚7(𝑊𝑖, 𝜃)
)

= (𝜃0 − 1)(1 − 𝑃𝑠1 ,𝑠0 (𝑦 = 1)) − 𝜃1𝑃𝑠1 ,𝑠0 (𝑦 = 1) + 𝑃 (𝑡 = 1) = 0 (E.52)

It is then is true that 𝜃0𝑃𝑠1 ,𝑠0 (𝑦 = 0) = 𝑃𝑠1 ,𝑠0 (𝑦 = 0) + 𝜃1𝑃𝑠1 ,𝑠0 (𝑦 = 1) − 𝑃 (𝑡 = 1). This is the linear relationship between (𝜃1, 𝜃0) in the
identified set from Proposition 1. Going in the other direction, it is immediate that if the two bounds and the linear relationship
hold so that 𝜃 ∈ Θ(𝑃 ), then 𝐸𝑃

(

𝑚𝑗 (𝑊𝑖, 𝜃)
)

≤ 0 for 𝑗 = 1, 2… , 6 and 𝐸𝑃
(

𝑚7(𝑊𝑖, 𝜃)
)

= 0, demonstrating that the expected values of
moment functions represent the joint identification region 𝜃 ∈ Θ(𝑃 ).

Proposition 6. Assume that the index and reference tests have a tendency to wrongly agree for 𝑦 = 1 and 𝑦 = 0. Let the moment function
̄̄ be equal to 𝑚̄1 in (18) in all components except ̄̄𝑚4(𝑊𝑖, 𝜃), and ̄̄𝑚6(𝑊𝑖, 𝜃):

̄̄𝑚4(𝑊𝑖, 𝜃) = 𝜃1
𝑟𝑖 − 1 + 𝑠0
𝑠1 − 1 + 𝑠0

− 𝑡𝑖 +
1
2

(

𝑟𝑖 − 𝑠1
𝑟𝑖 − 1 + 𝑠0
𝑠1 − 1 + 𝑠0

)

̄̄𝑚6(𝑊𝑖, 𝜃) =
(

𝜃1 +
−1 + 𝑠1

2

) 𝑟𝑖 − 1 + 𝑠0
𝑠1 − 1 + 𝑠0

− 𝑡𝑖𝑟𝑖 +
1
2

(

𝑟𝑖 − 𝑠1
𝑟𝑖 − 1 + 𝑠0
𝑠1 − 1 + 𝑠0

)

(B.4)

oint identified set Θ(𝑃 ) =
⋃

(𝑠1 ,𝑠0)∈

(

̄̄(𝜃1 ,𝜃0)(𝑠1, 𝑠0) × {(𝑠1, 𝑠0)}
)

for ̄̄(𝜃1 ,𝜃0)(𝑠1, 𝑠0) defined in Proposition 2 is represented by the moment
unction ̄̄𝑚. For each 𝜃 ∈

⋃

(𝑠1 ,𝑠0)∈ [0,
1+𝑠1
2 ] × [0, 1+𝑠02 ] × {(𝑠1, 𝑠0)} such that 𝐸𝑃

( ̄̄𝑚𝑗 (𝑊𝑖, 𝜃)
)

≤ 0 for j=1,…,6 and 𝐸𝑃
( ̄̄𝑚7(𝑊𝑖, 𝜃)

)

= 0, it
must be that 𝜃 ∈ Θ(𝑃 ). Conversely, if 𝜃 ∈ Θ(𝑃 ), then 𝐸𝑃

( ̄̄𝑚𝑗 (𝑊𝑖, 𝜃)
)

≤ 0 for 𝑗 = 1,…,6 and 𝐸𝑃
( ̄̄𝑚7(𝑊𝑖, 𝜃)

)

= 0.

roof of Proposition 6. The proof is analogous to the proof of Proposition 5. From the definition of ̄̄𝜃1 (𝑠1, 𝑠0) for 𝑗 = 1 in
roposition 2:

𝜃1𝑃𝑠1 ,𝑠0 (𝑦 = 1) ≥ 𝑚𝑎𝑥
(

0, 𝑃 (𝑡 = 1, 𝑟 = 1) − 𝑃𝑠1 ,𝑠0 (𝑟 = 1, 𝑦 = 0)
)

+ 𝑚𝑎𝑥
(

0, 𝑃𝑠1 ,𝑠0 (𝑟 = 0, 𝑦 = 1) − 𝑃 (𝑡 = 0, 𝑟 = 0)
)

𝜃1𝑃𝑠1 ,𝑠0 (𝑦 = 1) ≤ 𝑚𝑖𝑛
(

𝑃 (𝑡 = 1, 𝑟 = 0),
𝑃𝑠1 ,𝑠0 (𝑟 = 0, 𝑦 = 1)

2

)

+ 𝑚𝑖𝑛
(

𝑃 (𝑡 = 1, 𝑟 = 1) −
𝑃𝑠1 ,𝑠0 (𝑟 = 1, 𝑦 = 0)

2
, 𝑃𝑠1 ,𝑠0 (𝑟 = 1, 𝑦 = 1)

)

.

(E.53)

Suppose that 𝐸𝑃
( ̄̄𝑚𝑗 (𝑊𝑖, 𝜃)

)

≤ 0 for 𝑗 = 1, 2… , 6 and 𝐸𝑃
( ̄̄𝑚7(𝑊𝑖, 𝜃)

)

= 0. From (B.4):

𝐸𝑃
( ̄̄𝑚4(𝑊𝑖, 𝜃)

)

= 𝜃1𝑃𝑠1 ,𝑠0 (𝑦 = 1) − 𝑃 (𝑡 = 1) + 1
2

(

𝑃 (𝑟 = 1) − 𝑠1𝑃𝑠1 ,𝑠0 (𝑦 = 1)
)

= 𝜃1𝑃𝑠1 ,𝑠0 (𝑦 = 1) − 𝑃 (𝑡 = 1, 𝑟 = 0) − 𝑃 (𝑡 = 1, 𝑟 = 1) +
𝑃𝑠1 ,𝑠0 (𝑟 = 1, 𝑦 = 0)

2
≤ 0

𝐸
( ̄̄𝑚6(𝑊𝑖, 𝜃)

)

=
(

𝜃1 +
−1 + 𝑠1

2

)

𝑃𝑠1 ,𝑠0 (𝑦 = 1) − 𝑃 (𝑡 = 1, 𝑟 = 1) + 1
2

(

𝑃 (𝑟 = 1) − 𝑠1𝑃𝑠1 ,𝑠0 (𝑦 = 1)
)

= 𝜃1𝑃𝑠1 ,𝑠0 (𝑦 = 1) −
𝑃𝑠1 ,𝑠0 (𝑟 = 0, 𝑦 = 1)

2
− 𝑃 (𝑡 = 1, 𝑟 = 1) +

𝑃𝑠1 ,𝑠0 (𝑟 = 1, 𝑦 = 0)
2

≤ 0

(E.54)

Using 𝐸𝑃
( ̄̄𝑚𝑗 (𝑊𝑖, 𝜃)

)

= 𝐸𝑃
(

𝑚𝑗 (𝑊𝑖, 𝜃)
)

for 𝑗 = 1, 2, 3, 5, 𝐸𝑃
( ̄̄𝑚7(𝑊𝑖, 𝜃)

)

= 𝐸𝑃
(

𝑚7(𝑊𝑖, 𝜃)
)

, (E.48), (E.50), (E.52), and (E.54) yields
hat 𝐸𝑃

( ̄̄𝑚𝑗 (𝑊𝑖, 𝜃)
)

≤ 0 for 𝑗 = 1,…,6 and 𝐸𝑃
( ̄̄𝑚7(𝑊𝑖, 𝜃)

)

= 0 represent the joint identification Θ(𝑃 ) =
⋃

(𝑠1 ,𝑠0)∈

(

̄̄(𝜃1 ,𝜃0)(𝑠1, 𝑠0) ×

{(𝑠1, 𝑠0)}
)

by the same argument as in the proof of Proposition 5. □

ppendix F. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2024.105842.
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