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Abstract

Seidenfeld and Wasserman (1993) define the phenomenon of dilation. When a

dilation occurs, any additional information increases the uncertainty about the true

state of the world. In this paper, we show that dilation may manifest in real-world

scenarios when information is provided by binary classifiers, such as diagnostic tests

and predictive algorithms. This can happen when classifier performance measures

are partially identified due to an imperfect reference classifier, which are ubiquitous

in practice. We characterize when a dilation occurs and develop corresponding

inference procedures based on methods for subvector inference in moment inequality

models. We apply the approach to diagnostic procedures for COVID-19 detection,

using CT chest scans evaluated by radiologists and AI algorithms. We cannot

reject the hypothesis that the radiologists’ assessments exhibit a dilation, thus

showcasing a potential real-world instance of a dilation. We additionally illustrate

the broader applicability of our methodology by rejecting the hypothesis that data-

mining techniques for predicting the riskiness of credit card applications are non-

informative in the sense of a dilation.

Keywords: Ambiguity, partial identification, dilation, binary classifier, diagnostic tests.

JEL Classification: C14, C38, D83, D90, I12, I18.

∗This paper supersedes Ziegler (2021). We are thankful for comments and questions from Eric Mbakop
and audience members at the Pennsylvania Theory Conference 2023, the Durham York Theory Work-
shop 2023, the Theory Day 2023 at the University of Edinburgh, the NOeG Winter Workshop 2023,
and seminar participants at the University of Graz, NYU Shanghai, Royal Holloway University of Lon-
don, University of Surrey, and University of Udine. Parts of the research have been conducted while
Ziegler was visiting the University of Pittsburgh and NYU Shanghai, and he expresses his gratitude for
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1 Introduction

In economic theory, additional information is typically viewed as valuable—more data

should (weakly) help learn the true state of the world. However, this tenet may break

down when the additional information is ambiguous. In such cases, a counterintuitive

phenomenon called dilation, originally formalized by Seidenfeld and Wasserman (1993),

can arise. When a dilation occurs, any additional information may only make it more

difficult to learn the true state of the world. In this paper, we show that dilation may

arise in practice when information is provided by binary classifiers, such as diagnostic

tests and predictive models.

To illustrate the phenomenon, consider a medical doctor diagnosing a patient based

on the results of a diagnostic test. Watson et al. (2020) explain that the doctor first

forms a pre-test probability of the patient having the disease based on heuristics and

expert knowledge. They then observe a test result and form the corresponding post-test

probability. Ideally, the test is perfect, and the post-test probability is 0 in the case of

a negative result or 1 in the case of a positive result. This is depicted in Figure 1a.

In practice, the test is almost always imperfect, and may be assumed to have precisely

measured false positive and false negative rates. Then the post-test probabilities may

not be 0 or 1, but may still be informative, as in Figure 1b. This can be seen since

the pre-test probability is shifted upwards (downwards) due to a positive (negative) test

result. Importantly, note that the post-test probability is a unique value in either case.

Pre-test probability Post-test probability

1

0

positive result

negative result

(a) Perfect information

Pre-test probability Post-test probability

1

0

positive result

negative result

(b) Imperfect, but unambiguous information

Figure 1: Unambiguous information

Uniqueness is lost if the test performance is ambiguous. Then we say that the test

provides ambiguous information. In this case, even a unique pre-test probability will
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result in a set of post-test probabilities for either test result. Thus, the doctor will face

greater uncertainty than before, regardless of the test result, as in Figure 2a. Despite

this, all post-test probabilities are shifted with respect to the pre-test one, and the test is

informative of the disease status. However, this increase in uncertainty may be so severe

that the test ceases to be informative. Figure 2b exemplifies such a situation. Note

that the pre-test probability is included in the set of post-test probabilities, regardless

of the test result. We then say that a dilation occurs. This increase in uncertainty can

render the diagnostic test completely uninformative. Since all tests entail some costs, a

regulatory body may prefer not to approve such tests.

Pre-test probability Post-test probabilities
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0

positive result

negative result

(a) Ambiguous information

Pre-test probability Post-test probability

1

0

positive result

negative result

(b) A Dilation

Figure 2: Ambiguous information

The performance of a new classifier is commonly evaluated relative to an imperfect

reference. In this case, its performance becomes partially identified, and the information

provided is ambiguous. The uncertainty generated by this imperfection can induce a

dilation, where the additional information provided by the classifier does not help reduce

uncertainty but instead exacerbates it. Dilations have traditionally been viewed as an

abstract theoretical concept, and their real-world implications have remained elusive. To

address this, we develop a rigorous framework for detecting dilation using recent advances

in partially identified models of moment inequalities. We derive conditions under which

dilation occurs and propose a novel statistical test to determine whether a binary classifier

is a dilation. Our approach allows for a formal inference procedure that can be applied to

diagnostic tests, predictive models, such as credit application, fraud detection, or spam

filtering, remote sensing, such as satellite imaging for land cover change, weak supervision

in machine learning.

In particular, we demonstrate the practical relevance of a dilation using two real-world
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applications. First, we analyze COVID-19 detection using CT chest scans evaluated by

both radiologists and AI algorithms. In this case, we find evidence that the radiologists’

assessments correspond to a dilation: despite receiving more information through diag-

nostic imaging, uncertainty about the disease status of patients increases, potentially

rendering the value of such scans negative. This example provides a concrete case of

dilation occurring in a high-stakes medical context and also illustrates that dilations can

occur in concrete real-world settings. Second, we apply our methodology to the domain of

credit risk assessment, specifically analyzing data-mining techniques used to predict the

riskiness of credit card applications. Here, we reject the hypothesis that these predictive

models are non-informative in the sense of a dilation, illustrating the broader applicability

of our approach across a variety of settings.

After reviewing the related literature in Subsection 1.1, the remainder of the paper

is structured as follows. Section 2 introduces the setting, provides the definition of a

dilation, and discusses its identification. Section 3 extends the setting to account for

sampling variation, formalizes the statistical test for the hypothesis of a dilation, and

includes the theorem demonstrating the uniform size validity of the proposed test. Finally,

Section 5 explores extensions that relax the knowledge assumptions about the reference

test and discusses policy implications. All formal proofs are relegated to the appendix.

1.1 Related Literature

In the context of evaluating medical diagnostic tests, the concept of gold standard bias—

the discrepancy between observed and actual test accuracies—is well-established. Early

research by Gart and Buck (1966), Staquet et al. (1981), and Zhou et al. (2009) es-

tablished that when reference and index tests are statistically independent, given the pa-

tient’s true health status, one can point-identify the index test’s sensitivity and specificity,

provided the reference test’s performance is known exactly. However, this assumption of

conditional independence is often unrealistic, particularly when tests share physiological

bases, as noted by Valenstein (1990), Hui and Zhou (1998), and Emerson et al. (2018).

Subsequent studies explored how the relationship between tests affects the gap between

apparent and actual performance. Deneef (1987) found that if tests are conditionally

independent, apparent performance underestimates true performance, while positive cor-

relation can inflate apparent accuracy. Boyko et al. (1988) and Valenstein (1990) further
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investigated how this relationship changes with disease prevalence and the correlation of

classification errors, respectively. The main focus of this string of literature is the qualita-

tive direction of this bias: are estimates biased upwards or downwards. Yet, the practical

application of these findings is limited by the challenge of measuring correlation between

test results, as it depends on unobservable factors. Notable exceptions include Thibodeau

(1981) and later Emerson et al. (2018). Our analyses directly builds on Obradović (2024)

who derives the sharp joint identified set, formalizing and incorporating existing depen-

dence assumptions to further reduce its size, and therefore sharply bounds the derived

parameters of interest.

As we illustrate here, this lack of point identification induces ambiguity in the in-

terpretation of the test’s result: the test’s post-test probabilities are imprecise—that is,

the probability assignment is not necessarily a unique number.1 In the realm of impre-

cise probabilities, the concept of dilation was initially demonstrated by Good (1974).

Subsequently, Walley (1991), Seidenfeld and Wasserman (1993) and Herron et al. (1997)

systematically analyzed dilations. Our identification result aligns closely with the spirit

of the latter two papers. Since then, there has been a substantial theoretical literature on

dilations, which is too extensive to provide a comprehensive summary here. Interested

readers are encouraged to explore recent contributions by Bradley (2019, in particular,

Section 3.1) and Gong and Meng (2021), along with the references therein. Implicitly

in many of these approaches, and shared by ours, is a sort of full Bayesian updating

(Pacheco Pires, 2002). Alternative updating procedures for ambiguous information have

been recently investigated by Dominiak et al. (2022) and Lin and Payró (2024). Moving

beyond theoretical work, Shishkin and Ortoleva (2023) conducted experimental studies

on how individuals value dilations. It is noteworthy that there has been a recent surge

of interest in studying ambiguous information in experimental economics, exemplified by

Epstein and Halevy (2024), Kellner et al. (2022), Kops and Pasichnichenko (2023), and

Liang (2024). Manski (2018) mentions the possibility of a dilation in concrete questions

about personalized patient care. In contrast to prior research, to our best knowledge,

our study is the first to conduct a statistical analysis of dilations in a real-world context,

particularly within the framework of diagnostic testing, using methods from the partial

1Imprecise probability can be seen as natural extension of usual probability theory and has a long
history in the foundations thereof and decision theory. Bradley (2019) provides an overview.
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identification literature. In our contribution, we propose a statistical test to detect the

presence of a dilation. However, we do not take a stance on the decision-making processes

individuals employ when encountering a dilation.

Our proposed method of statical inference is based on subvector inference in moment

inequality models, as introduced by Bugni et al. (2017). Thus, we contribute to the recent

developments exploring issues of partial identification in medical and epidemiological

settings such as Bhattacharya et al. (2012), Manski (2020), Toulis (2021), Manski (2021),

Stoye (2022), Sacks et al. (2022), and Obradović (2024)

2 Identification of a Dilation

In this section, we first present the setting and expound on the identification of test

performance in practically relevant settings. We then define dilation in the context of

diagnostic tests, and derive an equivalence result which provides tractable necessary and

sufficient conditions for a test to be a dilation. The result forms a basis for the statistical

test we propose in Section 3.

2.1 Test Performance Identification

We are concerned with evaluating the performance of a novel test t, called the index test.

Let t = 1 denote a positive, and t = 0 a negative test result. Similarly, y = 1 denotes

the existence of the underlying condition we are testing for and y = 0 the absence of it.2

Identification of test performance measures requires knowledge of y, which is most often

unobservable.3 For this reason, health status is commonly measured by a reference test

r. Let r = 1 and r = 0 denote positive and negative reference test results, respectively.

Each individual in the performance study population is thus characterized by a triple

(t, r, y) ∈ {0, 1}. Let P denote the joint distribution of the triple.

Test performance is predominantly quantified in the form of sensitivity and specificity,

2This can be extended to other tests, such as antibody tests, with minor semantic changes, since they
can also measure if a person previously had the condition.

3Otherwise, testing would be superfluous.
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also referred to as performance measures or operating characteristics.4

Sensitivity: θ1 := P(t = 1|y = 1) (1)

Specificity: θ0 := P(t = 0|y = 0) (2)

The parameters are defined when P(y = 1) ∈ (0, 1) in the population of interest.

The test r is usually the best currently available test for y. In spite of this, in practice

r is almost always imperfect and P(r = y) < 1. Consequently, it is critical to consider

a setting in which we allow r to be an imperfect test. Define reference test sensitivity

s1 := P(r = 1|y = 1) and specificity s0 := P(r = 0|y = 0). For conciseness, let θ := (θ0, θ1)

and s := (s0, s1).

Data in test performance studies are collected by randomly sampling participants

from a population of interest, and testing them with both the reference and index tests.

The observed outcome for each participant is (t, r) ∈ {0, 1}2. Sampling identifies the joint

probability distribution P (t, r), but not P(t, r, y) or more specifically P(t|y). When s1 < 1

or s0 < 1, so that the reference test is imperfect, P (t, r) will not point identify θ without

further assumptions. This fact is well documented in the literature on gold standard

bias. (Zhou et al., 2009) Moreover, it is known that incorrectly assuming s1 = s0 = 1

will produce biased estimates of the true θ.

One approach for identifying θ relies on assuming exact knowledge of s in addition

to conditional independence of t and r, i.e. t ⊥⊥ r|y. (Buck and Gart (1966), Staquet

et al. (1981)) However, multiple authors, e.g. Vacek (1985), Valenstein (1990), or Hui

and Zhou (1998), have argued that conditional independence is implausible in practice.

A salient case is when t and r are physiologically related, such as when they rely on the

same type of sample (e.g. nasal swab or capillary blood) or measure the same quantities

(e.g. antibody reaction to tuberculin).

Thibodeau (1981) indicates that allowing t ⊥̸⊥ r|y partially identifies θ when s is

known. In other words, there exists a set of values of θ that are consistent with s and

observed data P (t, r), called the identified set. Obradović (2024) provides the sharp

identified set under standard assumptions in the test performance study literature. That

is, he provides the smallest set that contains all values of θ that are consistent with

4In the machine learning and related literature, these two measures are often called recall and true
negative rate, respectively. In there, the PPV is also called precision.
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P (t, r) and s, denoted by ΘP (s). We will occasionally omit the dependence on s and P

and simply use Θ to refer to the sharp identified set. Here we provide the assumptions

sufficient to characterize ΘP (s) and build upon these results.

Assumption 1. (Reference Performance) Sensitivity and specificity of the reference test

are known and satisfy s1 + s0 > 1.

Knowledge of s is a non-trivial assumption, but it is a weakening of assuming a perfect

reference test and it is commonly assumed in literature concerned with gold standard bias

correction, such as Gart and Buck (1966), Thibodeau (1981), Staquet et al. (1981), and

Emerson et al. (2018). The current norm of assuming that the reference test is perfect5

means that s = (1, 1) and is therefore covered by Assumption 1. However, it is restrictive

for some applications. Sometimes it is more appropriate to only assume that s is known

approximately only. Emerson et al. (2018) explain: “If very little is known about the

reference test performance, then it is clear that a comparison to such a reference test is

a futile exercise and can provide no information about a new test.” In Section 5, we will

discuss an extension of our approach to such a weaker assumption. Additionally, there,

we will provide an alternative formulation which yields a confidence set for s such that t is

a dilation. One can then consider whether it is plausible for performance of the reference

test to lie in this set.

We further maintain that s1+s0 ≥ 1, which can be decomposed into two cases. First,

Assumption 1 says that s1+ s0 ̸= 1. If s1 = 1− s0, one can easily show that the reference

test is independent of the underlying health status. Thus, in such a case the reference

test provides no information on y and it cannot be used as a reasonable reference. In

other words, we require the reference test to perform better than a simple coin toss. This

is a minimal requirement for r to be called a diagnostic test, c.f. Rogan and Gladen

(1978). Second and given that s1 + s0 ̸= 1, the second implication of Assumption 1 is

that s1 > 1 − s0. This, however, is barely a normalization and therefore without loss

of generality. To see that it without loss, consider the alternative case that s1 < 1 − s0

holds. In this case, it would be possible to redefine r∗ = 1 − r, so that s∗1 = 1 − s1 and

s∗0 = 1− s0 and therefore also s∗1 > 1− s∗0.

5Examples in the literature with this assumption are too numerous to cite.
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Assumption 2. (Bounded Prevalence) The reference test yield P (r = 1) satisfies 1−s0 <

P (r = 1) < s1, where s = (s0, s1) satisfies Assumption 1.

Although, the population prevalence P(y = 1) is unobservable by itself, Assumptions

1 and 2 jointly point-identify P(y = 1) through to the implied prevalence Ps(y = 1) :=

P (r=1)+s0−1
s1+s0−1

, where we indicate the dependence on s explicitly, and then we also have

Ps(y = 0) = 1 − Ps(y = 1), of course. If Ps(y = 1) /∈ [0, 1] at least one of the two

assumptions is refuted. We call Assumption 2 Bounded Prevalence because it is then

equivalent to assuming the population prevalence satisfies P(y = 1) ∈ (0, 1), which is

an assumption that is implicit in any test performance study identifying sensitivity or

specificity, because without this assumption the performance measures are not properly

defined.

Under Assumptions 1 and 2, and given the data distribution P (t, r), Obradović (2024,

Proposition 1) defines ΘP (s) as

ΘP (s) :=

 (θ0, θ1) ∈ [0, 1]2
θ1 ∈ [θL1 (s), θ

U
1 (s)] and

θ0 =
θ1Ps(y = 1)− P (t = 1)

Ps(y = 0)
+ 1

 , (3)

where

θL1 (s) :=
1

Ps(y = 1)

[
max {0, P (t = 1, r = 0)− s0Ps(y = 0)}+

max {0, P (t = 1, r = 1)− (1− s0)Ps(y = 0)}
]
, (4)

and

θU1 (s) :=
1

Ps(y = 1)

[
min {P (t = 1, r = 0), (1− s1)Ps(y = 1)}+

min {P (t = 1, r = 1), s1Ps(y = 1)}
]
. (5)

Remark 1. If ΘP (s) is non-empty, then it is either one point or it corresponds to a line

segment in [0, 1]2 with positive and finite slope. In particular, note that when s = (1, 1),

i.e. the reference test is perfect, then θL1 (s) = θH1 (s) = P (t = 1|r = 1) and therefore

ΘP (s) is a singleton set. That is, under a perfect gold standard, point identification is

achieved.
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Remark 2. As already mentioned, to shorten the notation, we do only write Θ instead of

ΘP (s) occasionally when the dependence is either unimportant or clear from the context.

Moreover, at times we directly use Θ as a primitive object. Again, it should be clear from

the context if it is derived from s or a primitive object.

Assumption 3. (Anything Goes) For any (j, k) ∈ {0, 1}2, P (t = j, r = k) > 0.

To obtain a characterization of a dilation that is conducive to testing by existing

subvector inference methods, we maintain Assumption 3. This condition is realistic in

many practical settings. It fails only if a certain result for r = k makes a particular

outcome for t = j impossible P -almost surely. Such dependence is generally not expected

for two diagnostic tests. We emphasize that Assumption 3 is not necessary to identify

ΘP (s) nor to characterize t as a dilation in terms of θ ∈ ΘP (s). It is only used to further

simplify the characterization. We expound on the details in Subsection 2.2.

2.2 Decisions and Dilations

After determining the performance ΘP (s) of the novel test t, it is natural to consider its

prospects as a tool for decision-making. In line with our exposition, we thus examine

the use of the test in any clinical setting in which performance of t is learned from the

performance study. Let Q(t, y) denote any clinical population distribution such that

the test has the same sensitivity and specificity as in the performance study population.

Formally, let Q(t, y) be any distribution such that P(t|y) = Q(t|y). We emphasize that

it is possible that Q(y = 1) ̸= P(y = 1). Suppose also Q(y = 1) ∈ (0, 1) since the use of

t is not warranted otherwise.

We first explain the importance of post-test probabilities for decision-making and

define them. Then we define dilations using post-test probabilities. Finally, we provide

a characterization for t to be a dilation in terms of ΘP (s).

2.2.1 Post-Test Probabilities

Sensitivity and specificity measure the likelihood of obtaining a particular test result given

a specific health condition. However, in risk assessment and (clinical) decision-making,

the focus is on determining the probability of actually having or not having a disease

based on the test result, expressed as Q(y = j|t = j) for j = 0, 1. The probability of
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having the disease, given a positive test result (t = 1), is called the positive predictive

value (PPV), while the probability of being healthy given a negative test result (t = 0)

is known as the negative predictive value (NPV). Equivalently, one can consider the

positive post-test probability (PPP), Q(y = 1|t = 1), and the negative post-test probability

(NPP), Q(y = 1|t = 0). For our purposes, we will use PPP and NPP throughout the

discussion for ease of exposistion. In the context of medical decision-making, Altman and

Bland (1994), and more recently Manski (2021), argue that sensitivity and specificity are

less relevant than post-test probabilities for decision-making. However, they note that

sensitivity and specificity are commonly extrapolated from test performance studies to

find post-test probabilities for members of relevant clinical populations.6

Watson et al. (2020) explain that clinicians assess π := Q(y = 1) ∈ (0, 1), also

known as the pre-test probability, prior to conducting the test. This is done based on

local rates of illness, patients’ symptoms and signs, likelihood of alternative diagnoses,

and history of relevant exposure. PPP and NPP are formed using Bayes’ rule, based on

knowledge of θ ∈ ΘP (s) from the performance study and the assessed π. Decisions are

made depending on the relevant post-test probability upon observing t. In this paper,

we limit the analysis to informativeness of t in terms of post-test probabilities, and we

do not discuss the intricacies of decision-making.

Remark 3. The following results do not depend on the clinician accurately assessing π,

as they hold uniformly for all π ∈ (0, 1). However, these results apply only to clinical

populations where the (potentially unknown) parameter θ accurately reflects the test’s

performance, i.e. P(t|y) = Q(t|y) is assumed to hold.

Thus, for a given θ and π, PPP and NPP are

v1(θ; π) := Q(y = 1|t = 1) =
θ1π

θ1π + (1− θ0)(1− π)
and

v0(θ; π) := Q(y = 1|t = 0) =
(1− θ1)π

θ0(1− π) + (1− θ1)π
,

respectively.

6Mulherin and Miller (2002) and Willis (2008) discuss design of performance studies intended to
improve generalizability and provide guidance to physicians on how to assess whether performance study
measures extrapolate to populations of interest.
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2.2.2 Dilation

Suppose first that θ is point identified. As previously mentioned, post-test probabilities

follow directly for a given π from the Bayes’ rule. Figure 3a illustrates this updating

graphically for θ1 + θ0 > 1. A positive test results in a post-test probability higher

than π, as indicated by the blue arrow. Conversely, a negative result yields a post-test

probability lower than π, as indicated by the red arrow.

When θ is partially identified, post-test probabilities will also be partially identified.

For θ ∈ Θ we denote the identified sets for PPP and NPP as:

Vj(Θ;π) :=
{
vj(θ; π) : θ ∈ Θ

}
for j = 0, 1, (6)

which are depicted in Figure 3. The interpretation of the post-test probabilities is un-

changed, but they are not known exactly. Indeed, this is an instance of imprecise proba-

bility or ambiguity in the test result. However, in the figure the test is still informative in

the following sense: Upon observing t = 1, the lower bound on the post-test probability

of being diseased lies above π. Conversely, upon observing t = 0, the upper bound is

below π.

Finally, consider the case in Figure 3c. Here, the pre-test probability is strictly con-

tained within the identified set for the post-test probability, regardless of the observed

test result. That is, observing the test result not only introduces ambiguity, but this am-

biguity is so pronounced that for neither post-test probability an unambiguous direction

of change can be identified. We will call such a test uninformative, and this is the main

idea behind the phenomenon known as dilation.

Definition 1 (Seidenfeld and Wasserman, 1993). Given the set Θ, the index test is called

a dilation for pre-test probability π if

{π} ⊊ V1(Θ;π) and {π} ⊊ V0(Θ;π). (7)

An index test is called a dilation if it is a dilation for every pre-test probability π ∈ (0, 1).

Thus, we say that t is a dilation for π if the pre-test probability π is strictly contained

within the identified set of possible post-test probabilities of being diseased, regardless

of the test outcome. We refer to a test t as a dilation if it is a dilation for any possible,
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Q(y = 1) Q(y = 1|t)
1

0

t = 1

t = 0

π

v1

v0

(a) Predictive values

Q(y = 1) Q(y = 1|t)
1

0

t = 1

t = 0

π

V1

V0

(b) Set of predictive values

Q(y = 1) Q(y = 1|t)
1

0

t = 1

t = 0

π

V1

V0

(c) Dilation

Figure 3: Updating pre-test to post-test probabilities. Dependence on π and Θ is
suppressed. The left panel depicts point-identified θ with θ1 + θ0 > 1, in the middle

panel, θ is partially identified but t is informative. The right panel presents a dilation.

non-trivial pre-test probability π. In other words, a dilation occurs when the test result,

rather than narrowing down the likelihood of disease, strictly broadens the range of

possible probabilities, leaving more uncertainty than before for any initially assigned

pre-test probability.

Remark 4. A couple of remarks are necessary to clarify our Definition 1 in relation to the

original definition by Seidenfeld and Wasserman (1993). On one hand, they accommodate

imprecise probabilities in the pre-test probability, allowing for cases where π is contained

within a known set. On the other hand, apart from the just-mentioned difference, our

definition demands uniformity across all non-trivial π, whereas their definition applies to

a specific π, i.e., what we refer to as dilation for π

2.2.3 Characterizing Dilation

Whether a test t is a dilation critically depends on its performance measures θ ∈ Θ. Our

first main result characterizes necessary and sufficient conditions for t to be a dilation.

Proposition 1. Let Θ be a connected identified set for the performance measure of the

index test. The index test is a dilation if and only if there exist θ, θ′ ∈ Θ such that

θ0 + θ1 ≤ 1 and θ′0 + θ′1 ≥ 1, where at least one inequality is strict.

Remark 5. According to Seidenfeld and Wasserman (1993, Theorem 2.1) and assum-

ing convexity, existence of dilation implies that t ⊥⊥ y is consistent with the data and

assumptions. Proposition 1 nests this result. The convexity requirement would imply
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path-connectedness of Θ in our setting, and when t is a dilation then there must exist

θ ∈ Θ such that θ1 + θ0 = 1 ( cf. Theorem 1), which is equivalent to t ⊥⊥ y. However,

although necessary, existence of such a θ is not sufficient to obtain a dilation, because of

the strict set-containment requirement; see also the next remark. Furthermore, the proof

itself only requires Θ to be connected, but the argument here requires path-connectedness.

Connectedness, however, is required for the result hold.7

Remark 6. Note that dilation can only occur if Θ is not a singleton. Thus, a necessary

condition for a dilation is the presence of ambiguity that arises naturally in our setting

from partially identified performance measures. In other words, if the performance mea-

sures are point-identified, a dilation cannot occur. The easiest example of this is when

s = (1, 1), meaning, the reference test is perfect—–a proper gold standard, cf. Remark 1.

Proposition 1 takes Θ as a primitive object, but for the relevant application this set

will be derived from the data and s, namely, as ΘP (s) given by Equation 3. Under

the maintained assumption, and then combining Remark 1 with Proposition 1 gives the

desired result as a corollary.

Corollary 1. Suppose Assumptions 1 and 2 hold, and let ΘP (s) denote the corresponding

identified set for the performance measures of the index test. The index test is a dilation

if and only if there exist θ, θ′ ∈ ΘP (s) such that θ0 + θ1 ≤ 1 and θ′0 + θ′1 ≥ 1, where at

least one inequality is strict.

In light of Remark 6, we also need ΘP (s) to be a non-singleton set to ensure that

there is actual ambiguity in the performance of the index test. Assumption 3 provides

a sufficient condition for such ambiguity in the absence of a perfect reference test. Fur-

thermore, it is suitable for the empirical applications we have in mind, as it only fails if

a specific result for r = k makes a particular outcome for t = j impossible almost surely.

Such dependence is generally not expected for two imperfect binary classifiers.

Lemma 1. Suppose s ∈ [0, 1]2 satisfies Assumption 1 and maintain Assumption 2. Then

ΘP (s)—as defined in Equation 3—is non-empty. Furthermore, if Assumption 3 holds

additionally, then ΘP (s) is not a singleton set if and only if s = (s0, s1) ̸= (1, 1).

7For an easy example, consider Θ = {(1, 1), (0, 0)}. Then, V1(Θ;π) ∩ V0(Θ;π) = {0, 1}, which does
not intersect with (0, 1) at all, of course.
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Now we are ready to establish the main identification result formally as Theorem 1,

in which Assumption 3 allows a simplification of the dilation characterization. Later we

will show how this identification result allows formulating a tractable subvector inference

problem which can be solved using existing tools.

Theorem 1. Maintain Assumptions 1, 2 and 3, and let ΘP (s) be the resulting identified

set as in Equation 3. Then t is a dilation if and only if (1) s ̸= (1, 1) and (2) there exists

θ ∈ ΘP (s) such that θ1 + θ0 = 1.

For results of Theorem 1 to be used directly for inference, one must first assume

knowledge of s, which might be unsatisfactory for some applications. In Section 5, we

extend Theorem 1 to cases where s is only known approximately or not at all.

2.3 Numerical Examples

To illustrate the key points from the previous section, we present three examples. First,

we consider the extreme case where the index test is independent of the reference test, with

the joint distribution given in Table 1. Second, we examine a case where the index test is

weakly correlated with the reference test, as shown in Table 2. Finally, we explore a case

where the index test is highly correlated with the reference test, with the corresponding

joint distribution depicted in Table 3. In all cases, we set s = (0.9, 0.9), indicating that

the reference test performs reasonably well, although it is not perfect. This choice of s

satisfies Assumption 1 under the normalization s1 > 1− s0. Additionally, Assumption 3

is satisfied in all three cases.

Table 1: Independent joint distribution of index and reference test results.

P (t ↓, r →) r = 0 r = 1 P (t)

t = 0 25% 25% 50%
t = 1 25% 25% 50%

P (r) 50% 50%

In the first case, where the index test is independent of the reference test, and if the

reference test were perfect, the index test would also be independent of the underlying

health condition. However, due to the imperfection of the reference test, the performance

measure of the index test is only partially identified. The left panel of Figure 4 illustrates
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Table 2: Joint distribution of two tests with weak correlation.

P (t ↓, r →) r = 0 r = 1 P (t)

t = 0 30% 20% 50%
t = 1 20% 30% 50%

P (r) 50% 50%

Table 3: Highly correlated joint distribution of index and reference test results.

P (t ↓, r →) r = 0 r = 1 P (t)

t = 0 40% 10% 50%
t = 1 10% 40% 50%

P (r) 50% 50%

the resulting partially identified sets. Even though the performance of the reference test is

known with absolute precision, the set ΘP (s) still contains multiple possible performance

measures (denoted by θ), represented by the dark, solid line in the figure. Consequently,

we lack point identification. Intuitively, this is because, while we know that the index and

reference tests are independent, we do not know the exact correlation between the index

test and the underlying health condition. For the other two tests, partial identification

occurs for the same reason, as shown in the center and right panels of Figure 4.

Figure 4: ΘP (s) for independent tests, weakly correlated, and highly correlated test,
respectively from left to right.

Maybe not surprisingly, in the independent case, the index test is a dilation.8 This is

clearly visible in Figure 4 by applying Theorem 1: the index test is a dilation if and only

if the identified set intersects the antidiagonal, represented by the red, dashed line in the

figure. This illustrates the simplification provided by Theorem 1. Now for the correlated

8It is worth noting, however, that the index test would not be a dilation if the reference test were
perfect. See Remark 6.
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cases in the center and right panel of Figure 4, we observe that the index test remains a

dilation in the case of weak correlation, but not when the correlation between the tests

is high. Therefore, only in the high correlation case is the index test informative in this

specific sense.

To further verify these observations, we turn to the post-test probabilities. In Figure 5,

we consider a specific pre-test probability, π = 0.5.9 This figure confirms the earlier

insights by directly applying the definition of a dilation: the index test is a dilation

in the first two cases (independence and weak correlation), but not in the case of high

correlation. Notably, the weak correlation case is only marginally a dilation, because a

slight perturbation of the joint distribution towards higher correlation would render it an

informative test.

Q(y = 1) Q(y = 1|t)
1

0

t = 1

t = 0

π
V1
=
V0

Q(y = 1) Q(y = 1|t)
1

0

t = 1

t = 0

π
V1

V0

Q(y = 1) Q(y = 1|t)
1

0

t = 1

t = 0

π

V1

V0

Figure 5: Sets of post-test probabilities for independent tests, weakly correlated, and
highly correlated test, respectively from left to right.

3 Estimation and Inference

Theorem 1 in Section 2 fully characterizes when the index test t is a dilation, but this

requires knowledge of the data distribution P (t, r). In practice, this distribution is typ-

ically unknown, and only sample data from P (t, r) are available. To address this, based

on our characterization in Theorem 1 and recent developments in partial identification,

we develop an inference procedure to test whether t is a dilation. Furthermore, we show

that the resulting statistical test is uniformly consistent in level across a broad class of

permissible distributions.

9Note, however, that the specific value of π does not affect the qualitative features of the figure, as
dilation is defined uniformly over all π ∈ (0, 1).
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Analogous to standard point estimation and inference problems, one can first “esti-

mate” whether t is a dilation. Replacing population parameters with consistent estimators

in closed-form expressions yields the consistent plug-in estimator Θ̂P (s) of the identified

set ΘP (s). (Manski and Pepper, 2000 and Tamer, 2010) Then, based on Theorem 1, t is

“estimated” to be a dilation if there exist θ ∈ Θ̂P (s) such that θ1 + θ0 = 1.

To address sampling variability, we move beyond point estimation and construct a hy-

pothesis test for dilation. Our test is uniformly valid across a wide range of distributions.

Uniformity ensures that the actual coverage probability closely matches the prescribed

confidence level for all distributions, regardless of sample size. Without uniformity, there

is a risk that—for any given sample size—some distributions may produce confidence

regions that deviate from the intended coverage, undermining inference reliability. More-

over, uniformity generally leads to better finite sample performance than tests that are

not uniformly valid. (Canay and Shaikh, 2017, Section 3.1; Canay et al., 2023, Remark

2.1)

3.1 Baseline Assumptions

LetWi = (ti, ri) ∈ {0, 1}2 for i = 1, . . . , n represent the observed data from n observations

of the distribution P (t, r). In our setting, the distribution of the observed data is a

categorical distribution P (t, r) for (t, r) ∈ {0, 1}2. We assume that the distribution of

observed data P belongs to a baseline distribution space denoted by P . Note that every

P ∈ P can be identified with an element ∆3—the three-simplex. Therefore, we identify

P with a subset of a Euclidean space and endow P with the Euclidean topology, which in

our case is the same as the (usual) weak topology on the space of probability distributions.

As usual, we will assume that we have access to a random sample.

Assumption 4. (Random Sampling) For every P ∈ P, the study sample is a sequence

of i.i.d. random vectors Wi = (ti, ri), where each Wi follows the distribution P .

To address the aforementioned uniformity issue, we need to strengthen some of the

assumptions from Section 2 to hold uniformly, too. Obviously, the results in the previous

section remain true with these stronger assumptions.

Assumption 2’. (Uniformly Bounded Prevalence) There exists εr ∈ (0, ε̄) such that for

every P ∈ P, we have P (r = 1) ∈ [1 − s0 + εr, s1 − εr], where s = (s0, s1) satisfies
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Assumption 1.

Together with Assumption 1, Assumption 2’ is equivalent to a uniform bound on

the implied prevalence Ps(y = 1). To see this, recall—from the discussion following

Assumption 2—that specific s determines Ps(y = 1) via P (r = 1). Here, we have the

corresponding statement that holds uniformly across all P ∈ P .

Finally, Assumption 3 requires a strengthening to hold uniformly too.

Assumption 3’. (Uniformly Non-degenerate Data) There exists an εd ∈
(
0, 1

4

)
such

that for every P ∈ P and every (t, r) ∈ {0, 1}2, P (t, r) ≥ εd holds.

Under these strengthened assumptions, the baseline distribution space P is compact,

as formally established in the following lemma.

Lemma 2. If Assumption 1, Assumption 2’ and Assumption 3’ hold, then P is compact.

3.2 The Proposed Test

We are interested in testing whether the index test is uninformative in the sense of being

a dilation. Using Theorem 1, we can formulate the hypothesis as follows:

H0 : θ0 + θ1 = 1 vs. H1 : θ0 + θ1 ̸= 1. (8)

As mentioned above, given that we have a partially identified model, it is crucial to

propose a test that remains uniformly valid across all distributions in the set P . We

accomplish this by leveraging two recent results: following Obradović (2024) we charac-

terize the identified set through moment (in)equalities, and then are able to apply the

minimum resampling test from Bugni et al. (2017), which ensures the desired properties.

In the following, we describe how these two components work concretely in our con-

text. Specifically, we will start by showing how the conditions that define the identified set

ΘP (s) can be recast as moment (in)equalities through the introduction of an appropriate
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moment function, defined as follows:

m(Wi, θ; s) :=



m1(Wi, θ; s)

m2(Wi, θ; s)

m3(Wi, θ; s)

m4(Wi, θ; s)

m5(Wi, θ; s)

m6(Wi, θ; s)

m7(Wi, θ; s)


:=



(θ1 − s1)
ri−1+s0
s1−1+s0

− (ti − 1)ri

(θ1 − 1 + s1)
ri−1+s0
s1−1+s0

− (ri − 1)(1− ti)

(θ1 − 1) ri−1+s0
s1−1+s0

− (ti − 1)

−θ1
ri−1+s0
s1−1+s0

+ ti

(−θ1 + s1)
ri−1+s0
s1−1+s0

+ ti(1− ri)

(−θ1 + 1− s1)
ri−1+s0
s1−1+s0

+ tiri

(θ0 − 1)
(
1− ri−1+s0

s1−1+s0

)
− θ1

ri−1+s0
s1−1+s0

+ ti


, (9)

where Wi = (ti, ri). Intuitively, the first three functions handle the condition θ1 ≥ θL1 (s)

(c.f. Equation 4). Note that summing two max functions—each with two arguments—

yields four cases. However, one of these cases, namely θ1 ≥ 0, is already encompassed

by the overall parameter space we are considering. Therefore, only three functions are

both necessary and sufficient. Similarly, functions 4 through 6 address θ1 ≤ θU1 (s) (c.f.

Equation 5). Thus, the first three functions constrain the lower bound, while the next

three enforce the upper bound, ensuring the identified set respects both conditions of

Equation 3 on θ1. Finally, the last function establishes the linear relationship between θ0

and θ1 (c.f. Equation 3 and Remark 1). These functions collectively allow us to represent

the identified set ΘP (s) through moment (in)equalities, thus enabling the application of

results from this literature.

Proposition 2 (Obradović, 2024, Proposition 5). Suppose s satisfies Assumption 1 and

P satisfies Assumption 2, then

ΘP (s) =

 (θ0, θ1) ∈ [0, 1]2
(∀j = 1, . . . , 6) EP [mj(·, θ, s)] ≥ 0,

and EP [m7(·, θ, s)] = 0.

 .

With the problem now framed as a moment (in)equality model, we are ready to

formally define the proposed test, following Bugni et al. (2017). The test rejects the null

hypothesis in Equation 8 when the profiled test statistic, denoted as Tn, is large enough

and exceeds a certain critical value, where n represents the sample size of (Wi)
n
i=1. To

define Tn rigorously and clarify how it functions in the test procedure, we must first

introduce the necessary additional notation.



20 3.2 The Proposed Test

For j = 1, . . . , 7, let

m̄n,j(θ; s) :=
1

n

n∑
i=1

mj(Wi, θ; s), and

σ̂n,j(θ; s) :=

√√√√ 1

n

n∑
i=1

[mj(Wi, θ; s)− m̄n,j(θ; s)]
2,

denote the sample mean and standard varaince of the moment functions, respectively.

Furthermore, we need the so-called modified method of moments test statistic

Qn(θ; s) :=
6∑

j=1

[
min

{
0,

m̄n,j(θ; s)

σ̂n,j(θ; s)

}]2
+

[
m̄n,7(θ; s)

σ̂n,7(θ; s)

]2
.

Then, we define the profiled test statistic as

Tn := min
θ∈Θ0

Qn(θ; s),

where Θ0 = {(θ0, θ1) ∈ [0, 1]2 | θ0 + θ1 = 1} represents the antidiagonal of the unit square,

which—–as previously discussed—–plays a key role in the test.

To determine whether the test statistic is sufficiently large to reject the null hypothesis,

we also need a critical value ĉ1−α
n , which depends on the significance level α ∈ (0, 1). The

formal definition of ĉ1−α
n requires additional notation, and thus we defer the details to

Subsection A.1.

With this notation in place, we can now formally establish that our proposed test

controls size uniformly over all P ∈ P , under the assumptions stated in Subsection 3.1.

Theorem 2. Let Assumptions 1, 2’, 3’, and 4 hold. Then, for all α ∈
(
0, 1

2

)
,

lim sup
n→∞

sup
P∈P:ΘP (s)∩Θ0 ̸=∅

P
[
Tn > ĉ1−α

n

]
≤ α.

Theorem 2 asserts that, under the specified assumptions and as the sample size n tends

to infinity, the maximum probability—across all considered distributions that satisfy the

null hypothesis–—that the test statistic Tn exceeds the critical value ĉ1−α
n does not surpass

α. This means that the test maintains its nominal significance level asymptotically,

ensuring the probability of incorrectly rejecting the null hypothesis remains controlled
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at α in the limit, regardless of which distribution within the considered class generated

the data. Thus, the test controls size uniformly because the error rate is controlled

simultaneously for all distributions satisfying the null hypothesis, not just a specific one.

The proof of Theorem 2, provided in Subsection C.1, relies on an application of

Theorem 4.1 from Bugni et al. (2017). Our assumptions allow us to verify that their

result applies in this setting. Specifically, we explicitly show how the relevant polynomial

minorant condition–—which ensures that the test statistic grows sufficiently fast as it

moves away from the null hypothesis—–is satisfied. Additionally, we establish the uni-

form Donsker and pre-Gaussian property directly, whereas Bugni et al. (2017) impose

assumptions that imply it.

Remark 7. As discussed in Section 4 of Bugni et al. (2017), their result extends to

more general test functions and critical values. We conjecture, though without formal

argument, that our Theorem 2 also generalizes to this broader class.

3.3 Simluations

In this section, we analyze the finite sample behavior of our method through a simulation

study. It is well known that inference in partially identified models often tends to be

overly conservative. Therefore, this simulation study aims to shed light on how our

proposed test performs in finite samples, particularly in terms of observed significance

and power. To provide a meaningful comparison, we evaluate the performance of our

method alongside two other established approaches. Given the conservativeness typically

encountered in partially identified models, this comparison helps assess how each method

balances significance and power in finite samples.

First, we consider a test based on the popular two-step procedure of Romano et al.

(2014), which is designed for testing a finite number of moment inequalities and—as we

have argued earlier—encompasses our test. Additionally, we evaluate a test based on

the approach of Goodman (1965). While the detailed discussion of this test is deferred

to Subsection A.2, in brief, it leverages the multinomial nature of our data, and Good-

man (1965) provides a method for obtaining simultaneous confidence intervals for the

parameters. In our case, this results in confidence intervals for θ0 + θ1.

Throughout the simulation study, we fix the reference test with performance measure

s = (0.9, 0.9) and consider five data-generating processes. In addition to the three cases
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introduced in Subsection 2.3, we introduce two additional designs to explore the power of

the tests. The first additional design involves a slight perturbation of the joint distribution

in Table 2, which previously resulted in a dilation. This perturbation, presented in

Table 4, results in an index test that is no longer a dilation, providing insight into how

the tests respond to small deviations from the dilation condition. The second additional

design, shown in Table 5, increases the correlation between the index and reference tests

beyond the weak correlation case but remains less correlated than the highly correlated

case in Table 3. This design allows investigating, again, he power of the test for an

intermediate scenario.

Table 4: Perturbation of Table 2.

P (t ↓, r →) r = 0 r = 1 P (t)

t = 0 31% 19% 50%
t = 1 19% 31% 50%

P (r) 50% 50%

Table 5: Data generating process for intermediate case of correlation.

P (t ↓, r →) r = 0 r = 1 P (t)

t = 0 35% 15% 50%
t = 1 15% 35% 50%

P (r) 50% 50%

In terms of sample size, we consider three different scenarios: n ∈ {50, 100, 500}.

These sample sizes are relatively small but are typical for the applications we have in

mind. For each design, we perform 1, 000 Monte Carlo iterations and set the significance

level at 5%.

Table 6 presents the results from the simulation study, showing the rejection proba-

bilities for all the considered designs. Across all designs, we observe that all three tests

tend to be conservative: they reject the null hypothesis with a probability lower than

the nominal 5% significance level, even when the null hypothesis is true. However, our

proposed test (denoted as BCS in the table) consistently outperforms the two other tests.

For the first two designs, where the null hypothesis is true and the index test is a di-

lation, our test rejects the null hypothesis more frequently than the alternatives while

maintaining significance below the nominal 5% level. This demonstrates that our test has
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Table 6: Simluation results: Observed rejection probabilites.

Design 1 Design 2 Design 3 Design 4 Design 5

DGP Table 1 Table 2 Table 4 Table 5 Table 3
H0 true true false false false

n = 50
G 0.9% 0.6% 0.2% 0.7% 4.3%

RSW 0% 0% 0% 0.1% 4.3%
BCS 0% 0.8% 3.9% 22% 76%

n = 100
G 0% 0% 0% 1% 30%

RSW 0% 0% 0% 0.1% 19%
BCS 0% 1% 3.1% 43% 100%

n = 500
G 0% 0% 0% 50% 100%

RSW 0% 0% 0% 28% 100%
BCS 0% 1.3% 9.2% 99% 100%

1, 000 Monte Carlo iterations. G, RSW, and BCS denote the tests based on
Goodman (1965), Romano et al. (2014), and Bugni et al. (2017), respectively.
The last one is our proposed test.

better performance in controlling the error rate while still being conservative, as expected

for partially identified models. In contrast, for the other three designs, where the null

hypothesis is false, the power of the tests becomes the relevant measure. Here, our pro-

posed test shows significantly higher power, even with smaller sample sizes. Considering

Design 4 and the largest sample size, n = 500, our test rejects the null hypothesis nearly

100% of the time, whereas the other tests only reject about half the time at best. No-

tably, in the borderline case of Design 3—an especially difficult scenario where there is no

dilation—our test still manages to reject the null hypothesis occasionally, while the other

two tests never reject it. Thus, we conclude that even with relatively small sample sizes,

our proposed test shows reasonable power. Although it remains somewhat conservative,

it is notably less so than the two other tests.

4 Applications

In this section, we apply our proposed method to real-world data to demonstrate its

practical relevance and performance in empirically relevant settings.

4.1 CT chest scans for the detection of COVID-19

Early in the COVID-19 pandemic, some hospitals used CT chest scans, interpreted by

radiologists, as a method to test for COVID-19. This diagnostic technique was typically
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evaluated against a PCR test, which served as the reference. Since PCR tests are not

entirely perfect10, this scenario fits precisely within our framework: the index test is the

CT chest scan, the reference test is the PCR test, and the underlying health condition

is whether the patient has COVID-19. As a concrete application, we use data from Ai

et al. (2020), collected in a hospital in Wuhan, China, in early 2020. At that early stage

of the pandemic, the authors (p. E32) concluded that “Chest CT may be considered as

a primary tool for the current COVID-19 detection in epidemic areas.” The data they

obtained is reproduced in Table 7. Furthermore, we need to specify the accuracy of the

reference test, the PCR test. Following Kanji et al. (2021), we assume s = (1, 0.9).

Table 7: Data from Ai et al. (2020) with t = 1 and r = 1 denoting a positive CT-chest
scan and a positive PCR-test, respectively.

r = 0 r = 1

t = 0 105 21 126
t = 1 308 580 888

413 601 n = 1014

Taking the empirical distribution as if it represents the population distribution, Fig-

ure 6 displays the corresponding identified set for the accuracy measures of the CT chest

scan, ΘP (s). Additionally, assuming a pre-test probability of π = 1/3, Figure 7 illustrates

the ambiguity regarding the post-test probabilities. While a positive CT chest scan yields

relatively little ambiguity—reflected by the size of the resulting set—there is significantly

more ambiguity following a negative CT scan. More importantly, both figures suggest

that a CT chest scan acts as a dilation, implying that it is uninformative. However, this

conclusion depends on treating the empirical distribution as if it were the true population

distribution, and therefore does not account for sampling variability in the data.

Applying our proposed test from Subsection 3.2 at a nominal significance level of α =

5%, we obtain a test statistic of Tn = 1.2518× 10−18 and a critical value of ĉ1−α
n = 1.112.

Therefore, we cannot reject the null hypothesis that the CT chest scan is a dilation.

Furthermore, by varying the significance level, we find that the p-value for this null

hypothesis is greater than 99%. In light of the simulation insights from Subsection 3.3,

which show that the test is somewhat conservative, this result strongly suggests that the

CT chest scan is indeed a dilation—–the first concrete real-world instance of such a case.

10See, for example, Arevalo-Rodriguez et al. (2020).
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Figure 6: ΘP (s) for the empirical distribution of Ai et al. (2020) assuming s = (1, 0.9).

Q(y = 1) Q(y = 1|t)
1

0

t = 1

t = 0

π
V1

V0

Figure 7: Sets of post-test probabilities for independent for empirical distribution of Ai
et al. (2020) assuming π = 1/3.

Instead of having humans interpreting the CT chest scan, Mei et al. (2020) use AI

algorithms to classify the CT chest scan as either positive or negative. Their data is

reproduced in Table 8. They also use a PCR test as a reference and therefore we set

s = (1, 0.9) here too.

Again, we want to test if the index test, i.e. the CT chest scan interpreted by their

AI algorithm, is a dilation at a significance level of α = 5%. Here we get a test statistic

of Tn = 39.6268 and a critical value of ĉ1−α
n = 4.5822. Since Tn > ĉ1−α

n , we reject the null

hypothesis that the index test is a dilation. Varying the significance level, we furthermore
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Table 8: Data from Mei et al. (2020) with t = 1 and r = 1 denoting a positive CT-chest
scan and a positive PCR-test, respectively.

r = 0 r = 1

t = 0 105 21 126
t = 1 308 580 888

413 601 n = 1014

find a p-value of less than 0.001%. In contrast to the previous case, here we conclude

that the proposed AI algorithm is informative in the sense of not being a dilation.

4.2 A deep neural network to predict loan approval

In this section, we apply our proposed statistical test to the context of loan approval

decisions, a critical area in the financial sector that heavily relies on data-driven methods.

Specifically, we examine binary classification models used to assess the risk associated

with loan applicants. The real-time binary classification model proposed by Abakarim

et al. (2018) offers a suitable case study for evaluating whether such a machine learning

model is informative or a dilation.

In their framework, the machine learning algorithm classifies loan applications as

either risky or not. In our framework, this classification serves as the index test, assigning

t = 1 if the application is classified as “good risk,” indicating that it should be approved.

Conversely, a classification as “risky” corresponds to t = 0, which Abakarim et al. refer to

as “bad risk.” To evaluate their proposed algorithm, they use the commonly referenced

German Credit dataset, a publicly available dataset that contains a binary classification

of whether a credit application is considered “good” or“bad” (Hofmann, 1994). While

the dataset is based on actual historical accounts, it is known to contain errors. These

errors could result in incorrect classifications within the data set. (Groemping, 2019)

For our purposes, this dataset can be treated as a reference test, where r = 1 indicates

a “good” application. However, two factors raise concerns about whether the reference

test perfectly reveals the truth. First, the aforementioned data issues may lead to erro-

neous classifications. Second, it is unclear whether an objective measure of “riskiness”

truly exists in this context—even if it is correct historic data, the recordings of riskiness

must be somewhat subjective. Because of these imperfections, the data from Abakarim

et al. (2018), reproduced in Table 9 provides a valuable basis for applying our proposed
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test.

Table 9: Data from Abakarim et al. (2018) with t = 1 and r = 1 denoting a ”good risk”
application according to the machine learning algorithm and the data set, respectively.

r = 0 r = 1

t = 0 203 43 246
t = 1 97 657 754

300 700 n = 1000

As explained, the assumption of an imperfect reference test seems reasonable in this

application, but it remains unclear what level of accuracy should be assumed to apply

our model. Therefore, we will proceed with two exploratory cases: (1) s = (0.9, 0.9) and

(2) s = (0.95, 0.95). These values are chosen to reflect a relatively high but not perfect

performance in the first case, and even greater accuracy in the second. To mitigate

the need for precise assumptions about the reference test’s accuracy, our extensions in

Section 5 offer a more flexible approach that accommodates uncertainty about—or even

a complete lack of knowledge of—the quality of the reference test.

For the test with the null hypothesis that the machine learning algorithm is a dila-

tion, we proceed with a nominal significance level of α = 5%, as before. In the first

case, with s = (0.9, 0.9), we obtain a test statistic of Tn = 35.9578 and a critical value

of ĉ1−α
n = 5.2481, leading to a rejection of the null hypothesis. In the second case, where

the reference test assumes higher accuracy (s = (0.95, 0.95)), we observe an even stronger

rejection of the null hypothesis. Therefore, considering the aforementioned caveats re-

garding the assumptions about the reference test’s accuracy, we conclude that, at least

for these exploratory cases, the machine learning approach is informative in predicting

loan riskiness. This analysis exemplifies the usefulness of our proposed test in evaluating

machine learning algorithms in financial decision-making contexts.

5 Extensions and Discussion

5.1 Uncertainty about the reference test’s performance

Throughout, we have maintained Assumption 1, which assumes that the performance

of the reference test, while allowed to be imperfect, is exactly known. This assumption

may introduce challenges, particularly when reliable estimates for the performance of
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the reference test are difficult to obtain. Real-world data often contains uncertainties

or varying estimates, making such strict assumptions difficult to justify in some cases.

For example, in Subsection 4.1, to apply our framework effectively, we had to assume

that the sensitivity and specificity of the reference test—specifically, the PCR test for

COVID-19—were known with precision. However, estimates for the sensitivity of such a

PCR test can vary, as illustrated by Alcoba-Florez et al. (2020).

In this section, we outline how our approach can be extended to account for uncer-

tainty regarding the reference test’s performance. Specifically, we aim to accommodate

situations where the sensitivity and specificity of the reference test lie within a, possibly

non-singleton, set S. We then generalize Assumption 1 as follows.

Assumption 1S. (Generalized Reference Performance) Sensitivity and specificity of the

reference test are contained in a known (i.e. non-empty) and path-connected set S ⊂

[0, 1]2 such that s1 + s0 > 1 holds for all s ∈ S.

Path-connectedness of S will be used to extend our characterization in Theorem 1.

While the preliminary characterization in Proposition 1 only requires connectedness, the

simplification provided by path-connectedness is crucial for our inference procedure in the

case where S is not a singleton set. We believe that Assumption 1S is relatively mild for

applications, as it accommodates sets such as singleton sets, line segments, rectangular

Cartesian products of closed intervals, general convex polygons, or closed disks that do not

contain points where s1 + s0 = 1. Although knowledge of S is a non-trivial assumption,

it is clearly a relaxation of Assumption 1. We further maintain that s1 + s0 ̸= 1 holds

for all s ∈ S, extending this condition from earlier. Given that s1 + s0 ̸= 1 for any s

and that S is (path-)connected, the entire set lies either fully above or fully below the

antidiagonal of the unit rectangle. Thus, we impose the same normalization, s0 + s1 > 1,

as before, but now across all s ∈ S.

Treating ΘP (·), as defined in Equation 3, as a correspondence, we can readily extend

the sharply identified set of performance measures for the index test—now denoted as

ΘP (S)—by taking it as the image of S under ΘP (·). Moreover, the path-connectedness

of S carries over to ΘP (S), as we establish next.

Lemma 3. If Assumption 1S holds, then ΘP (S) is a path-connected set.
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Since path-connectedness implies connectedness, Lemma 3 ensures that Proposition 1

remains applicable, and we therefore get a direct generalization of Corollary 1 with a

suitable extension of Assumption 2.

Assumption 2S. (Generalized Bounded Prevalence) The reference test yield P (r = 1)

satisfies 1− s0 < P (r = 1) < s1 for all s ∈ S, where S satisfies Assumption 1S.

Corollary 2. Suppose Assumptions 1S and 2S hold, and let ΘP (S) denote the corre-

sponding identified set for the performance measures of the index test. The index test is

a dilation if and only if there exist θ, θ′ ∈ ΘP (S) such that θ0 + θ1 ≤ 1 and θ′0 + θ′1 ≥ 1,

where at least one inequality is strict.

Furthermore, we also derive a similar implication of Assumption 3 as in Lemma 1,

namely the emergence of ambiguity, indicating non-point-identification in the index test’s

performance when the reference test is not perfect. In addition, the non-emptiness of

ΘP (S) carries over too.

Lemma 4. Suppose S ⊂ [0, 1]2 satisfies Assumption 1S and maintain Assumption 2S.

Then ΘP (S)—as defined above—is non-empty. Furthermore, if Assumption 3 holds ad-

ditionally, then ΘP (S) is not a singleton set if and only if S ≠ {(1, 1)}.

Now, all these results together allow us to present the generalization of the main

identification of a dilation in Theorem 1, which as before allows us to use subvector

inference as before.

Theorem 3. Maintain Assumptions 1S, 2S and 3, and let ΘP (S) be the resulting identi-

fied set. Then t is a dilation if and only if (1) S ≠ {(1, 1)} and (2) there exists θ ∈ ΘP (S)

such that θ1 + θ0 = 1.

By incorporating s as part of the parameter space, we furthermore can characterize

the identified set by means of moment (in)equalities similar to before. In fact, a direct

application of Obradović (2024, Proposition 5) gives here too that, under Assumptions

1S and 2, we have

ΘP (S) =

 (θ0, θ1, s0, s1) ∈ [0, 1]2 × S
(∀j = 1, . . . , 6) EP [mj(·, θ, s)] ≥ 0,

and EP [m7(·, θ, s)] = 0.

 .
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dilator set

With this in hand, one could proceed similarly to Subsection 3.2 to develop a test for

the null hypothesis that the index test is a dilation. Specifically, by modifying the test

statistic to

Tn := min
(θ,s)∈Θ0×S

Qn(θ; s),

the approach of Bugni et al. (2017) becomes applicable once again. However, at this

stage, we have not been able to formally extend Theorem 2 which would establish that

this extended test controls size uniformly across the wide class of distributions outlined in

Subsection 3.1.11 Nonetheless, our simulations indicate that the size is indeed controlled

by this test, leading us to conjecture that a version of Theorem 2 is valid in this setting.

Future research may address this gap, providing a more formal extension of Theorem 2

for this case.

5.2 Lack of knowledge of the reference test’s performance: the

dilator set

The previous section outlined an extension for cases where the performance of the refer-

ence test is not exactly known, but still assumes some knowledge of the reference test’s

performance. However, in certain applications, such as the one discussed in Subsec-

tion 4.2, even this assumption may be too demanding. In these situations, the researcher

might prefer not to make any assumptions about the reference test. Therefore, in this

section, we lay out how our approach can be extended to accommodate this lack of

knowledge by introducing the concept of a dilator set.

Intuitively, we can ask, given the data P (t, r), which reference test, characterized

by its performance measure s, would make the index test a dilation. By collecting all

such performance measures for the reference test, we define what we call the dilator set.

More formally, recall that ΘP (·) can be viewed as a correspondence, with the reference

test’s performance as input. This correspondence can be easily extended to the domain

S≥ := {(s0, s1) ∈ [0, 1]2 | s0 + s1 ≥ 1}. First, when s0 + s1 = 1 or Ps(y = 1) ∈ {0, 1},

we define ΘP (s) = [0, 1]2.12 Second, for all values of s such that Ps(y = 1) /∈ [0, 1], we

11More concretely, we were able to prove all but one condition necessary to apply Theorem 4.1 in
Bugni et al. (2017). Subsection C.1 states all these conditions for our main setting. While the relevant
polynomial minorant condition, i.e. Assumption A.3(1), is relatively straightforward to establish in our
main setting (Lemma A9), it becomes non-trivial in this extension. In particular, we were not able to
verify the conditions for s satisfying EPm1(W, θ∗, s) < 0 for θ∗ =

(
P (t = 0), P (t = 1)

)
and θ1 > P (t = 1).

12Note that s0 + s1 = 1 means that the reference test is independent of the underlying health status,
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define ΘP (s) = ∅.13 The dilator set, DP , is then the (lower) inverse of the correspondence

ΘP (·), evaluated at the antidiagonal, denoted by Θ0:

DP = {s ∈ S≥ | ΘP (s) ∩Θ0 ̸= ∅} .

Note that, if Assumptions 2 and 3 hold, then s ∈ DP if and only if the index test is a

dilation by means of Theorem 1.14 In this case, it is easy to see that DP is non-empty

and closed and, furthermore, its name as dilator set is justified.

Taking the data in Table 9 as the true data-generating process, Figure 8 illustrates

the resulting dilator set for this application. Specifically, DP is represented by the shaded

green area, meaning that if (and only if) the reference test’s performance measure falls

within this area, the machine learning algorithm of Abakarim et al. (2018) for loan ap-

plications would be a dilation. For instance, s = (0.7, 0.8) would result in a dilation,

whereas s = (0.9, 0.9) would not. Notably, the latter performance measure was consid-

ered in Subsection 4.2. In that section, assuming this level of reference test performance

and accounting for sampling variation, we also concluded that the algorithm is (most

likely) not a dilation.

Furthermore, exploiting Obradović (2024, Proposition 5) once more, the dilator set D

can be reformulated in terms of moment inequalities, as formally established in Propo-

sition 3 below. This allows us to apply techniques from moment inequality models also

in this extension. For example, one could use the approach from Romano et al. (2014)

to construct a confidence set for the dilator set that is uniformly valid in size across all

distributions considered in Subsection 3.1.

Proposition 3.

DP = D⌞P ∪ S0,

and therefore it does not provide any information about the prevalence. Thus, any Ps(y = 1) ∈ [0, 1] is
possible. If Ps(y = 1) ∈ {0, 1}, then either sensitivity or specificity of the index test is not well-defined.
For example, if Ps(y = 1) = 0, then θ0 in Equation 2 is not properly defined. The natural more general
definition would say that θ0 needs to satisfy θ0P(y = 0) = P(t = 0, y = 0) and then any θ0 ∈ [0, 1]
would be consistent with this more general definition. In this case, however, θ1 in Equation 1 remains
well-defined. Thus, we could also set ΘP (s) to be a proper subset of [0, 1]2 with the first dimension being
[0, 1]. This would not affect any of our discussion or results.

13If the reference test’s performance measure s results in Ps(y = 1) > 1 or Ps(y = 1) < 0, the
assumption about the reference test is refuted by the data, and thus the identified set is empty. See
Manski (2007).

14Strictly speaking, Theorem 1 does not apply if s0 + s1 = 1, but with the convention that ΘP (s) =
[0, 1]2 the theorem extends.
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Figure 8: Dilator set DP for the machine learning algorithm classifying loan
applications taking Table 9 as the true data-generating process. The dashed lines

correspond to s0 = P (r = 0) and s1 = P (r = 1).

where

D⌞P :=


(s0, s1) ∈ [0, 1]2

(1)EP

[
(θ1 − s1)(ri − 1 + s0)− (s1 − 1 + s0)(ti − 1)ri

]
≥ 0,

(2)EP

[
(−θ1 + 1− s1)(ri − 1 + s0) + (s1 − 1 + s0)tiri

]
≥ 0,

where θ1 = P (t = 1),

(3)EP

[
s1 − ri

]
≥ 0, and

(4)EP

[
s0 − 1 + ri

]
≥ 0.


,

and S0 := {(s0, s1) ∈ [0, 1]2 | s0 + s1 = 1}.

Recall that we extended ΘP (s) = [0, 1]2 for the case where s0 + s1 = 1. Alternatively,

we could have avoided this extension and simply taken the closure of the resulting set.

In that case, the previous proposition would yield only D⌞P as the fully equivalent set.

However, we opted for the current version because we believe it is reasonable to declare

a dilation when s0 + s1 = 1. In either case, the first two conditions are not moment

functions, because P (t = 1) is usually unknown. Nevertheless, these can be reformulated
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to include θ1 as an additional parameter. Specifically, this means that
(s0, s1, θ1) ∈ [0, 1]3

(1)EP

[
(θ1 − s1)(ri − 1 + s0)− (s1 − 1 + s0)(ti − 1)ri

]
≥ 0,

(2)EP

[
(−θ1 + 1− s1)(ri − 1 + s0) + (s1 − 1 + s0)tiri

]
≥ 0,

(3)EP

[
s1 − ri

]
≥ 0,

(4)EP

[
s0 − 1 + ri

]
≥ 0, and

(5)EP

[
θ1 − ti

]
= 0.


is isomorphic to D⌞P and is defined using only moment (in)equalities.

5.3 Policy implications

We conclude this paper with a potential direct policy implication for regulatory agencies,

illustrated by a simple example in the context of diagnostic testing. When approving a

new diagnostic test—the index test—there are often minimum requirements for specificity

and sensitivity. For example, typical thresholds for approval are 97% specificity and

80% sensitivity.15 However, it is commonly assumed, either explicitly or implicitly, that

the reference test is perfect, i.e., s = (1, 1), even when the reference test is actually

imperfect. This can lead to significant discrepancies in the evaluation of the index test’s

true performance as illustrated by Obradović (2024).

The hypothetical data in Table 10 would (exactly) meet these minimum requirements,

which might lead a regulator to consider approving the index test. However, if the

reference test is imperfect and these assumptions are not accounted for, the performance

of the index test might be overestimated. Even worse, the index test could be entirely

uninformative—in the sense of being a dilation—despite appearing to perform relatively

well and meeting the minimum requirements. Therefore, in such cases, it is worthwhile

to supplement the minimum requirements with an explicit test to determine whether the

index test is a dilation, using the procedure proposed in Section 3.

Here’s the revised version incorporating suggestions 2 and 3:

Another way to view this issue is through the dilator set, as introduced in Subsec-

tion 5.2. Taking the data as the actual data-generating process, Figure 9 shows the

15Examples include rapid antigen tests for COVID-19 (ECDC, 2021) or influenza (Green and StGeorge,
2018).
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Table 10: Potentially worrisome example of a diagnostic test.

r = 0 r = 1

t = 0 388 120 508
t = 1 12 480 492

400 600 n = 1000

dilator set for this example. It reveals that even if the reference test has perfect sensitiv-

ity (s1 = 1), there is a range of specificity, from 40% to just above 50%, that would still

result in the index test being a dilation. On the other hand, even with perfect specificity

(s0 = 1), the index test could still be a dilation if the sensitivity is relatively low and

around 62%.

Although these cases may seem extreme, as they require a significantly imperfect

reference test, they could be relevant for specific applications. For instance, some forms

of PCR tests for COVID-19 fall into the latter category.16 If such a PCR test were used

as the reference, the index test could be a dilation and therefore would be uninformative

in an extreme sense, despite appearing relatively satisfactory and meeting the minimum

thresholds mentioned above. This example therefore demonstrates that relying solely on

the minimum requirements might be insufficient and could lead to the approval of an

entirely uninformative test. The contribution of our paper provides a framework that

can help avoid such mistakes by offering a statistical test with desirable properties.

A Details about the tests

A.1 Critical values for the proposed test

Here, we elaborate on how the minimum resampling critical value ĉ1−α
n is calculated follow-

ing Bugni et al. (2017, Section 2). ĉ1−α
n is the 1−α of the statistic TMR

n = min{TDR
n , T PR

n },

where TDR
n and T PR

n are given as follows.

First, for j ∈ {1, . . . , 7} define the following stochastic process for

νn,j(θ; s) :=
1√
n

n∑
i=1

mj(Wi, θ; s)− m̄n,j(θ; s)

σ̂n,j(θ; s)
ζi,

16For example, based on point estimates, Alcoba-Florez et al. (2020) found that the lowest sensitivity
for the tests they considered was only 60.2%. Specificity for these tests is typically close to 100% as
mentioned above.
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Figure 9: Dilator set DP for data-generating process given by Table 10. The dashed
lines correspond to s0 = P (r = 0) and s1 = P (r = 1).

where ζi
i.i.d.∼ N(0, 1) for i = 1, . . . , n and independent of Wi. Next, for j ∈ {1, . . . , 7}

define17

ℓj(θ; s) :=

√
n√
lnn

× m̄n,j(θ; s)

σ̂n,j(θ; s)

and, for j ∈ {1, . . . , 6} set φj(θ; s) := ∞ if and only if ℓj(θ; s) > 1 and zero otherwise.

Then, the first statistics is given by

TDR
n := inf

θ∈Θ0:Qn(θ;s)≤Tn

{
6∑

j=1

min {0, νn,j(θ; s) + φj(θ; s)}2 + νn,7(θ; s)
2

}
, (10)

and the second is

T PR
n := inf

θ∈Θ0

{
6∑

j=1

min {0, νn,j(θ; s) + ℓj(θ; s)}2 + [νn,7(θ; s) + ℓ7(θ; s)]
2

}
.

In our actual implementation, we take the infimum over {θ ∈ Θ0 | Qn(θ; s) ≤ Tn + 10−4}

in Equation 10 and also use ĉ1−α
n +10−6 as the actual critical value. The reason for intro-

17In our implementation, we use the tuning parameter κn :=
√
lnn as suggested by Andrews and

Soares (2010) and Bugni et al. (2017), but as explained in there, any κn → ∞ with κn/
√
n → 0 as

n → ∞ would work too.
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duction of these constants are explained by Bugni et al. (2017, Remark 4.1) and Bugni

et al. (2017, Remark B.2), respectively. The exact value for the latter follows the sugges-

tion of Andrews and Shi (2013, p.625).

A.2 Test based on Goodman (1965)

An alternative test for the parameters of a multinomial distribution can be formulated

using simultaneous confidence intervals, following the approach of Goodman (1965). This

test is useful for constructing confidence intervals that ensure coverage of the true pa-

rameters with at least asymptotic level α. The details of this test, which we implement

in the simulations presented in Subsection 3.3, are outlined here.

First, P (t, r) is a categorical distribution with four categories, which can be viewed as

a multinomial distribution with a single draw. This allows us to apply the multinomial

framework to construct confidence intervals that simultaneously cover the true parameters

P (t = j, r = k) for all (j, k) ∈ 0, 12 with at least asymptotic level α. The statistical

imprecision in the estimates of (θ1, θ0) arises only from the uncertainty in estimating

P (t = j, r = k).

Next, recall from Theorem 1, we test whether there exists a pair (θ1, θ0) ∈ ΘP (s)

such that θ1 + θ0 = 1. To do this, we form bounds on the sum θ1 + θ0 using the sharply

partially identified set given by equations (3), (4), and (5), which gives

θ1 + θ0 ∈
[
1 +

θL1 (s)Ps(y = 1)− P (t = 1)

Ps(y = 0)
, 1 +

θU1 (s)Ps(y = 1)− P (t = 1)

P (y = 0)

]
.

Now, if Cn denotes the (closed) confidence set for the parameters P (t = j, r = k) for all

(j, k) ∈ 0, 12 given an i.i.d sample of size n, we can derive the confidence interval CInθ1+θ0

for θ1 + θ0 as

CInθ1+θ0
=

[
min

P (t=j,r=k)∈Cn
1 +

θL1 (s)Ps(y = 1)− P (t = 1)

P (y = 0)
,

max
P (t=j,r=k)∈Cn

1 +
θU1 (s)Ps(y = 1)− P (t = 1)

P (y = 0)

]
.

Thus, CInθ1+θ0
provides a tool to test our null hypothesis, namely, that there exists a pair

(θ1, θ0) ∈ ΘP (s) such that θ1 + θ0 = 1, which is equivalent to determining whether the
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index test is a dilation. Using the reasoning outlined in Molinari (2008, Section 2.3), we

can show that limn→∞ P (θ1 + θ0 ∈ CInθ1+θ0
) ≥ 1− α, ensuring asymptotic coverage.

Table 6 demonstrates that while the test provides adequate coverage, it exhibits sig-

nificantly lower power for any given sample size n and design compared to our preferred

approach based on subvector inference. This is because subvector inference more effec-

tively exploits the structure of the problem. Our simulations also show that the test

based on Goodman (1965) is substantially less computationally demanding than the in-

ference procedure based on Bugni et al. (2017). We measure resource demand in terms

of computation time, which might be relevant for large-sample application. Therefore,

while the test based on Goodman (1965) achieves asymptotic coverage, our preferred

inference procedure offers higher power and uniform asymptotic coverage despite being

more resource-intensive.

B Proofs for Section 2

Proposition 1. Let Θ be a connected identified set for the performance measure of the

index test. The index test is a dilation if and only if there exist θ, θ′ ∈ Θ such that

θ0 + θ1 ≤ 1 and θ′0 + θ′1 ≥ 1, where at least one inequality is strict.

Proof. We start with a preliminary observation: π ≤ v1(θ; π) and π ≥ v0(θ; π) if and

only if θ0 + θ1 ≥ 1 holds for any pre-test probability π ∈ (0, 1). By a similar argument,

all inequalities can be reversed, and the statement remains true. The same holds for all

strict inequalities.

For sufficiency, assume that there are θ, θ′ ∈ Θ such that θ0+θ1 ≤ 1 and θ′0+θ′1 > 1 and

fix an arbitrary pre-test probability π ∈ (0, 1). By the preliminary observation and the

existence of θ and θ′ we know that v1(θ; π) ≤ π < v1(θ
′; π) and v0(θ

′; π) < π ≤ v0(θ; π).

Since v1(·; π) : Θ → [0, 1] and v0(·; π) : Θ → [0, 1] are both continuous in θ and Θ is a

connected set, V1(Θ;π) and V0(Θ;π) are connected sets in [0, 1] and therefore non-trivial

intervals. Thus, {π} ⊊ V1(Θ;π) and {π} ⊊ V0(Θ;π). The argument for θ0 + θ1 < 1 and

θ′0 + θ′1 ≥ 1 is symmetric.

For necessity, fix an arbitrary π ∈ (0, 1) and suppose that {π} ⊊ V1(Θ;π) and {π} ⊊

V0(Θ;π). Since {π} ⊊ V1(Θ;π), there must exist θ, θ′ ∈ Θ such that π ≤ v1(θ; π) and

π ≥ v1(θ
′; π) where at least one inequality is strict (and, also π ≥ v0(θ; π) and π ≤
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v0(θ
′; π) where at least one inequality is strict; this follows either from {π} ⊊ V0(Θ;π), or

the law of total probability). The conclusion follows now directly from the preliminary

observation.

Lemma 1. Suppose s ∈ [0, 1]2 satisfies Assumption 1 and maintain Assumption 2. Then

ΘP (s)—as defined in Equation 3—is non-empty. Furthermore, if Assumption 3 holds

additionally, then ΘP (s) is not a singleton set if and only if s = (s0, s1) ̸= (1, 1).

Proof. Recall that under Assumptions 1 and 2, Ps(y = 1) = P (r=1)+s0−1
s1+s0−1

∈ (0, 1).

By expanding, one can easily show P (t = j, r = k)−Ps(r = k, y = l) = Ps(r = k, y =

1 − l) − P (t = 1 − j, r = k) for any (j, k, l) ∈ {0, 1}3. Thus, the following additional

expressions are true:

P (t = 1, r = 0)− s0Ps(y = 0) = (1− s1)Ps(y = 1)− P (t = 0, r = 0),

P (t = 1, r = 1)− (1− s0)Ps(y = 0) = s1Ps(y = 1)− P (t = 0, r = 1),

P (t = 1, r = 1)− s1Ps(y = 1) = (1− s0)Ps(y = 0)− P (t = 0, r = 1).

Using these expressions together with definitions in Equation 4 and Equation 5, it

is immediate that θU1 (s) ≥ θL1 (s) so [θL1 (s), θ
U
1 (s)] is a proper interval and therefore non-

empty.

For the second part, first note that if s = (1, 1) then ΘP (s) is a singleton as argued

in Remark 1, no matter whether Assumption 3 holds. Thus, it remains to show that

if Assumption 3 holds, we also have that ΘP (s) is not a singleton for s ̸= (1, 1). We

will establish this by contraposition: Supposing there exists s ∈ S \ {(1, 1)} such that

|ΘP (s)| ≤ 1, we will show that then there exists (j, k) ∈ {0, 1}2 such that P (t = j, r =

k) = 0.

Since we already established non-emptiness, |ΘP (s)| ≤ 1 is the same as |ΘP (s)| = 1

which holds if and only if θL1 (s) = θU1 (s). To complete the proof, we show that θL1 (s) =

θU1 (s) implies that P (t = j, r = k) = 0 for some (j, k) ∈ {0, 1}2. For this, there are 4

cases to consider in terms of θL1 (s).

We consider the first case in which θL1 (s) = 0. Then θU1 (s) = 0 only if P (t = 1, r =

0) = 0 and P (t = 1, r = 1) = 0, i.e. P (t = 1) = 0.

Consider next θL1 (s) = P (t = 1, r = 0)− s0Ps(y = 0). Let first P (t = 1, r = 0) ≤ (1−

s1)Ps(y = 1). Then for θU1 (s) = θL1 (s) to hold, it must be that min {P (t = 1, r = 1) + s0Ps(y = 0), s1Ps(y = 1) + s0Ps(y = 0))} =
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0 which is not possible by Assumption 2. Next suppose P (t = 1, r = 0) > (1− s1)Ps(y =

1). Observe that θL1 (s) = (1− s1)Ps(y = 1)− P (t = 0, r = 0). It must be −P (t = 0, r =

0) = min {P (t = 1, r = 1), s1Ps(y = 1))}, implying that P (t = 0, r = 0) = 0.

Next, suppose θL1 (s) = P (t = 1, r = 1) − (1 − s0)Ps(y = 0) Let P (t = 1, r = 1) ≤

s1Ps(y = 1). Then θU1 (s) = θL1 (s) only if min {P (t = 1, r = 0), (1− s1)Ps(y = 1)} =

−(1 − s0)Ps(y = 0) which contradicts Assumption 2. Next, notice θL1 (s) = s1Ps(y =

1) − P (t = 0, r = 1) and let P (t = 1, r = 1) > s1Ps(y = 1). It must be that −P (t =

0, r = 1) = min {P (t = 1, r = 0), (1− s1)Ps(y = 1)} so P (t = 0, r = 1) = 0.

Finally, let θL1 (s) = P (t = 1, r = 0) + P (t = 1, r = 1) − Ps(y = 0). Suppose

P (t = 1, r = 0) ≤ (1− s1)Ps(y = 1). Then

min {P (t = 1, r = 1) + Ps(y = 0), s1 + (1− s1)Ps(y = 0)} = P (t = 1, r = 1).

By the law of total probability and Assumption 2, we have s1 ≥ P (r = 1), and therefore

s1 ≥ P (t = 1, r = 1). Hence, the case contradicts Assumption 2. The ultimate case is

when P (t = 1, r = 0) > (1 − s1)Ps(y = 1). We can rewrite θL1 (s) = Ps(y = 1) − P (t =

0, r = 0)−P (t = 0, r = 1). It must be that −P (t = 0) = min{P (t = 1, r = 1)− s1Ps(y =

1), 0} = min{(1−s0)Ps(y = 0)−P (t = 0, r = 1), 0}. Hence, min{(1−s0)Ps(y = 0)+P (t =

0, r = 0), P (t = 0)} = 0 which implies that P (t = 0, r = 0) = P (t = 0, r = 1) = 0.

Therefore, if |ΘP (s)| ≤ 1 there exists (j, k) ∈ {0, 1}2 such that P (t = j, r = k) = 0,

concluding the proof.

Theorem 1. Maintain Assumptions 1, 2 and 3, and let ΘP (s) be the resulting identified

set as in Equation 3. Then t is a dilation if and only if (1) s ̸= (1, 1) and (2) there exists

θ ∈ ΘP (s) such that θ1 + θ0 = 1.

Proof. By Proposition 1 and, in particular Corollary 1, we need to show that there exist

θ, θ′ ∈ ΘP (s) such that θ0+ θ1 ≤ 1 and θ′0+ θ′1 ≥ 1, where at least one inequality is strict,

if and only if s ̸= (1, 1) and there exists θ′′ ∈ ΘP (s) such that θ′′1 + θ′′0 = 1.

For necessity, first note that s ̸= (1, 1) must hold, because if not then H(s) would be

a singelton by Lemma 1, contradicting the existence of θ and θ′, because they need to be

different. Second, suppose there exist θ, θ′ ∈ ΘP (s) such that θ1 + θ0 ≥ 1 and θ′1 + θ′0 ≤ 1

where at least one inequality is strict. Again, by Lemma 1, ΘP (s) is a non-singelton,
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non-empty set. Furthermore, ΘP (s) is a line segment as argued in Remark 1. It is then

immediate, cf. Remark 5, that there exists θ′′ ∈ Θ : θ′′1 + θ′′0 = 1.

For sufficiency, suppose that s ̸= (1, 1) and there exists θ′′ ∈ ΘP (s) with θ′′1 + θ′′0 = 1.

By Lemma 1 there exists θ ∈ ΘP (s) such that θ ̸= θ′′. As discussed in Remark 1, ΘP (s) is

a line segment with positive and finite slope, so θ1+ θ0 ̸= 1. Thus, there exists θ ∈ ΘP (s)

such that either θ1 + θ0 > 1 or θ1 + θ0 < 1. Then setting θ′ = θ′′ ∈ ΘP (s), we have

θ′1 + θ′0 = 1 demonstrating sufficiency.

C Proofs for Section 3

Lemma 2. If Assumption 1, Assumption 2’ and Assumption 3’ hold, then P is compact.

Proof. Recall that P is a bounded subset of a finite dimensional Euclidean space. Let us

denote the set of distributions considered under Assumption 3’ with P ′, which is directly

seen to be closed because of the weak inequalities. Let P ′′ denote the set of distributions

satisfying Assumption 2’, which is also closed because of the weak inequalities. Therefore,

both sets are compact. Now, we are interested in P = P ′ ∩ P ′′, which is compact as the

intersection of two compact sets.

C.1 Proof of Theorem 2

We will prove our Theorem 2, by means of an application of Bugni et al. (2017, The-

orem 4.1). Thus, we need to verify their Assumption A.1–A.3 and that our space of

considered distribution satifies P satifies their Definition 4.2. To do this and without fur-

ther explicitly stating it, we assume throughout this section that (i) Assumption 4 holds

for all P ∈ P , (ii) Assumption 1 holds, (iii) P satisfies Assumption 2’ (and a fortiori

Assumption 2), and (iii) P satisfies Assumption 3’ (and a fortiori Assumption 3).

The following Lemmata verify Bugni et al. (2017, Definition 4.2).

Lemma A1. For all j = 1, . . . , 7, there exists Mj ∈ (0,∞) such that for all (P, θ) ∈

P × [0, 1]2,

σ2
P,j(θ; s) := VP [mj(Wi, θ; s)] ≥

1

Mj

holds.



C Proofs for inference section 41

Proof. This is a special case of Claim 6 in Obradović (2024, p.29).

Lemma A2. There exists σ, σ ∈ (0,∞) with σ ≤ σ such that for all j = 1, . . . , 7 and all

(P, θ) ∈ P × [0, 1]2, we have σ2
P,j(θ; s) ∈ [σ2, σ2].

Proof. Consider any j = 1, . . . , 7. The lower bound follows immediately from Lemma A1

by setting σ = minj M
−1
j . For the upper bound, note that for any θ ∈ [0, 1]2, mj(·, θ; s)

is bounded and hence EP [mj(Wi, θ; s)] < ∞. Then,
(
mj(·, θ; s) − EP [mj(Wi, θ; s)]

)2
is

bounded. Since P is a categorical distribution supported on {0, 1}2, the expression is also

integrable, so E
[
mj(·, θ; s)−EP [mj(Wi, θ; s)]

]2
< ∞. Furthermore, because P is compact

(Lemma 2), there exists a uniform upper bound which is also finite.

Lemma A3. For all j = 1, . . . , 7,
{

mj(·,θ;s)
σ2
P,j(θ;s)

: {0, 1}2 → R
}
is a measurable class of func-

tions indexed by θ ∈ [0, 1]2.

Proof. The lemma follows directly from the definition of themj’s together with Lemma A2.

Henceforth, define σP,j(θ; s) =
√

σ2
P,j(θ; s).

Lemma A4. There exists a constant a > 0 such that for all j = 1, . . . , 7, we have

sup
P∈P

EP

[
sup

θ∈[0,1]2

∣∣∣∣mj(W, θ; s)

σP,j(θ; s)

∣∣∣∣2+a
]
< ∞ (11)

Proof. We will prove the stronger statement that the inequality holds for any a > 0. For

this, consider an arbitrary j = 1, . . . , 7 and an arbitrary constant a > 0. Now, for any

P ∈ P and W ∈ {0, 1}2, using Lemma A1 we have

sup
θ∈[0,1]2

∣∣∣∣mj(W, θ; s)

σP,j(θ; s)

∣∣∣∣2+a

≤ sup
θ∈[0,1]2

|Mjmj(W, θ; s)|2+a ,

where Mj < ∞ does not depend on P . Furthermore, since Mj is clearly continuous in θ,

we can replace the sup with a max and therefore

sup
θ∈[0,1]2

∣∣∣∣mj(W, θ; s)

σP,j(θ; s)

∣∣∣∣2+a

≤ max
(W ′,θ,s)∈{0,1}2×[0,1]2

|Mjmj(W
′, θ; s)|2+a

,

=
∣∣Mjmj(W

∗
j , θ

∗
j ; s)

∣∣2+a
< ∞,



42 C.1 Proof of size control

where (W ∗
j , θ

∗
j ) is an element of the argmax. Since the maximizer depends on j only, we

conclude that

sup
P∈P

EP

[
sup

s∈[0,1]2

∣∣∣∣mj(W, θ; s)

σP,j(θ; s)

∣∣∣∣2+a
]
≤ sup

P∈P
EP

[∣∣Mjmj(W
∗
j , θ

∗
j ; s)

∣∣2+a
]

=
∣∣Mjmj(W

∗
j , θ

∗
j ; s)

∣∣2+a
< ∞.

For i, j = 1, . . . 7, P ∈ P , and θ, θ′ ∈ [0, 1]2 define

ΩP (θ, θ
′)i,j :=

EP

[(
mi(W, θ; s)− EP [mi(W, θ; s)]

σP,i(θ; s)

)(
mj(W, θ′; s)− EP [mj(W, θ′; s)]

σP,j(θ′; s)

)]

and let ΩP (θ, θ
′) denote the 7× 7 matrix with row i = 1, . . . , 7 and column j = 1, . . . , 7

given by ΩP (θ, θ
′)i,j.

Lemma A5.

lim
δ↓0

sup
∥(θ,θ′)−(t,t′)∥<δ

sup
P∈P

∥ΩP (θ, θ
′)− ΩP (t, t

′)∥ = 0

Proof. First note that for any given θ ∈ [0, 1]2, σP,i(θ; s) continuous in P (recalling that

P is endowed with the Euclidean topology). Then Lemma A2 implies that

(
mi(·, θ, s)− EP [mi(W, θ, s)]

σP,i(θ, s)

)(
mj(·, θ′, s′)− EP [mj(W, θ′, s′)]

σP,j(θ′, s′)

)

is a bounded function for all j = 1, . . . , 7, all θ, θ′ ∈ [0, 1]2, and all P ∈ P . Thus, ΩP (θ, θ
′)

as a function of P is obtained from finitely many continuity-preserving operations on

continuous functions and therefore continuous itself in P . Joint-continuity in (P, θ, θ′)

follows then directly from the definition. By Berge’s theorem (which is applicable due to

Lemma 2; see Aliprantis and Border, 2006, Theorem 17.31)

D(θ, θ′, t, t′) := sup
P∈P

∥ΩP (θ, θ
′)− ΩP (t, t

′)∥
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is continuous. Then

D̂(δ) := sup
∥(θ,θ′)−(t,t′)∥≤δ

D(θ, θ′, t, t′)

is continuous too by Berge’s theorem. Thus, limδ↓0 D̂(δ) = 0. The conclusion follows from

a squeeze argument, because

D̂(δ) ≥ sup
∥(θ,θ′)−(t,t′)∥<δ

D(θ, θ′, t, t′) ≥ 0.

Next, we consider the following class of function index by θ ∈ [0, 1]2:

F =

{
v(θ) =

(
vj(θ)

)7
j=1

: {0, 1}2 → R7

∣∣∣∣vj(θ)(W ) =
mj(W, θ; s)− EPmj(·, θ; s)

σP,j(θ; s)

}

and for a given random sample (Wi)
n
i=1, j = 1, . . . , 7, and θ ∈ [0, 1]2 define

vn,j(θ) :=
1√

nσP,j(θ; s)

n∑
i=1

(
mj(Wi, θ; s)− EP [mj(·, θ; s)]

)

and vn(θ) := (vn,j (θ))
7
j=1 as the corresponding empirical process.

Furthermore, let ρP denote the coordinate-wise intrinsic variance semimetric given by

ρP (θ, θ
′) :=

∥∥∥∥∥∥∥

√√√√VP

[
mj(·, θ; s)
σ2
P,j(θ; s)

− mj(·, θ′; s)
σ2
P,j(θ

′; s)

]7

j=1

∥∥∥∥∥∥∥ .
Lemma A6 (Donsker class). The class F is P-uniform Donsker.

Proof. For each j = 1, . . . , 7, observe that vj(θ) is a function of θ (for a givenW ) expressed

as the ratio of a linear function in the numerator and the square root of a polynomial

in the denominator. The denominator is strictly positive everywhere, as guaranteed by

Lemma A1 and Assumption 1. The function is defined on the compact set [0, 1]2, and

therefore, it is Lipschitz continuous. This holds uniformly for all W , since W ∈ {0, 1}2,

and for all j = 1, . . . , 7. Furthermore, the Lipschitz constant can be chosen to hold

uniformly in P , because of Lemma A2 and Lemma A4. Letting K < ∞ denote the

corresponding uniform Lipschitz-constant, we trivially have EP [K
r] = Kr < ∞ for any
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r ∈ R and therefore, following the arguments in Van der Vaart (2000, Example 19.7), we

can get an upper bound on the bracketing integral that is independent of P ∈ P , i.e. the

bound holds P-uniformly. The conclusion now follows from an application of Van der

Vaart (2000, Theorem 19.5).

Lemma A7 (Pre-Gaussian class). The class F is P-uniform pre-Gaussian.

Proof. First,

sup
P∈P

EP

[
sup

θ∈[0,1]2
∥v(θ)∥

]
< ∞,

holds because the LHS is bounded above by

sup
P∈P

EP

[
sup

θ∈[0,1]2

∥∥∥∥∥
(
mj(W, θ, s)

σP,j(θ, s)

)7

j=1

∥∥∥∥∥+ sup
θ∈[0,1]2

∥∥∥∥∥
(
EPmj(W, θ, s)

σP,j(θ, s)

)7

j=1

∥∥∥∥∥
]
< ∞,

where finiteness follows from Lemma A4.

Secondly,

lim
δ↓0

sup
P∈P

EP

[
sup

ρP (θ,θ′)<δ

∥v(θ)− v(θ′)∥

]
= 0,

holds, because ρP is a seminorm it gives rise to a convex constraint set, which is fur-

thermore continuous in P , and therefore similar arguments as in the proof of Lemma A5

show the required continuity properties. This proves the lemma.

Lemma A8. The empirical process vn(θ) is asymptotically ρP -equicontinuous uniformly

in P ∈ P. That is, for any ε > 0,

lim
δ↓0

lim sup
n→∞

sup
P∈P

P ∗
(

sup
ρP (θ,θ′)<δ

∥vn(θ)− vn(θ
′)∥ > ε

)
= 0,

where P ∗ denotes the outer probability.

Proof. Note that the considered class F posses a P-uniform, measurable, square inte-

grable envelope, because all considered functions are uniformly bounded. Then Lemma A6

and Lemma A7 together are equivalent to the class being asymptotically ρP -equicontinuous

uniformly in P ∈ P . (Van Der Vaart and Wellner, 1997, Theorem 2.8.2)
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Combined all of the above, show that P satisfies the properties stated in (Bugni et al.,

2017, Definition 4.2). It remains to verify their Assumptions A.1–A.3.

We first note that their Assumption A.1 is automatically satisfied. Our GMS function

φ as defined in Subsection A.1 satisfies the needed properties as explained just after

Equation (4.3) and Remark B.1 in Bugni et al. (2017).18 Second, Assumption A.2 is not

needed in our implementation because, as suggested by Bugni et al. (2017, Remark B.2),

we adjusted the critical value by a small constant as mentioned in the last paragraph of

Subsection A.1. Third, we verify their Assumption A.3, which requires the introduction

of some further notation first.

P0 := {P ∈ P : Θ0 ∩ΘP (s) ̸= ∅}

QP (θ; s) :=
6∑

j=1

[
min

{
0,

EPmj(W, θ; s)

σP,j(θ; s)

}]2
+

[
EPm7(W, θ; s)

σP,7(θ; s)

]2
gP,j(θ; s) :=

EPmj(W, θ; s)

σP,j(θ; s)

P∗ := {P ∈ P : ΘP (s) ̸= ∅}

Assumption A.3. The following conditions hold.

1. For all P ∈ P0 and all θ ∈ Θ0,

QP (θ; s) ≥ cmin

{
δ2, inf

θ̃∈Θ0∩ΘP (s)
||θ − θ̃||2

}

for some constants c,δ > 0.

2. Θ0 is convex.

3. The functions gP,i are differentiable in θ for any P ∈ P∗ and the class of functions{
(∇gP,j)

7
j=1 | P ∈ P∗

}
is equicontinuous, that is:

lim
δ→0

sup
P∈P∗,(θ,θ′):||θ−θ′||≤δ

||(∇gP,j)
7
j=1(θ; s)− (∇gP,j)

7
j=1(θ

′; s)|| = 0.

18More formally, this follows from Bugni et al. (2015, Lemma D.9). See also Remark B.1 ibidem. Note
that Bugni et al. (2017, Remark B.1) incorrectly refers to Lemma D.8 of Bugni et al. (2015).
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Note that (2) in Assumption A.3 holds trivially in our case. We will verify the other

two conditions formally in the next two lemmata next.

Lemma A9. Assumption A.3(1) holds.

Proof. First, note that for all θ such that θ0 + θ1 = 1, we have EP [m7(W, θ; s)] = P (t =

1) − θ1. Second, note that for all P ∈ P0, the intersection Θ0 ∩ ΘP (s) consists of a

single point, i.e., Θ0 ∩ ΘP (s) = {θ∗}, where θ∗ = (P (t = 0), P (t = 1)). This is because

EP [m7(W, θ; s)] = 0 must hold together with θ0 + θ1 = 1.

Next, observe that for all θ ∈ [0, 1]2, we have

QP (θ; s) ≥
[
EP [m7(W, θ; s)]

σP,7(θ; s)

]2
.

Therefore, it suffices to prove that

[
EP [m7(W, θ; s)]

σP,7(θ; s)

]2
≥ c ∥θ − θ∗∥2,

for some constant c > 0 and all θ ∈ Θ0.

By Lemma A2, we have σP,7(θ; s) ≤ σ for some positive constant σ. Since θ0 + θ1 = 1

and P (t = 0)+P (t = 1) = 1, we get the squared Euclidean distance between θ and θ∗ as

∥θ − θ∗∥2 = (θ0 − P (t = 0))2 + (θ1 − P (t = 1))2 = 2(P (t = 1)− θ1)
2.

Combining these results, we get

[
EP [m7(W, θ; s)]

σP,7(θ; s)

]2
≥

(
P (t = 1)− θ1

σ

)2

=
1

2σ2∥θ − θ∗∥2.

Thus, setting c =
1

2σ2 > 0, we have

QP (θ; s) ≥ c ∥θ − θ∗∥2.

Finally, note that we can take δ > 0 arbitrarily to get

QP (θ; s) ≥ cmin

{
δ2, inf

θ∗∈Θ0∩ΘP (s)
∥θ − θ∗∥2

}
,
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holding for all θ ∈ Θ0.

Lemma A10. Assumption A.3(3) holds.

Proof. By the same argument as in the proof of Lemma A6 all gP,j treated as functions

of (θ, P ) are smooth and locally Lipschitz, which carries over to their derivatives too. As

functions of θ these derivatives are defined on compact sets, [0, 1]2, and therefore they

are (globally) Lipschitz. Let KP,j denote the Lipschitz constant for a given P ∈ P and

j = 1, . . . , 7. Now defineK = maxP∈P,j=1,...,7KP,j, which is well-defined and finite because

of Lemma 2 and the smoothness property mentioned before. Now, K is a uniformly valid

Lipschitz constant for the whole class {(∇gP,j)
7
j=1 : P ∈ P} and therefore the class is

equicontinuous.

Combining all the results obtained in this section allows us to invoke Bugni et al.

(2017, Theorem 4.1), which then proves our Theorem 2.

D Proofs for Section 5

Lemma A1. The image of a path-connected space under a path-connected valued corre-

spondence which admits a continuous selector is path-connected.

Proof. Let f : X ⇒ Y be the correspondence with the properties stated.

If f(X) is empty, the statement is vacuously true. Otherwise, take y, y′ ∈ f(X).

By definition, there exist x, x′ ∈ X such that y ∈ f(x) and y′ ∈ f(x′). Since X is

path-connected, there exists a path pX : [0, 1] → X with pX(0) = x and pX(1) = x′.

Furthermore, by assumption, there exists a continuous selection of f , which we denote by

g. Then the composition g ◦ pX : [0, 1] → Y is continuous. Additionally, since f(x) and

f(x′) are path-connected, we know there exists paths p : [0, 1] → Y and p′ : [0, 1] → Y

from y to g(x) and y′ to g(x′), respectively.

Now define p∗ : [0, 1] → Y as follows:

p∗(a) =


p(3a) a ∈ [0, 1/3]

g(pX(3a− 1)) a ∈ (1/3, 2/3)

p′(3− 3a) a ∈ [2/3, 1],
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which is continous because

lim
a↘1/3

p∗(a) = lim
a↘1/3

g(pX(3a− 1)) = g(pX(0)) = g(x) = p(1) = lim
a↗1/3

p∗(a)

and

lim
a↗2/3

p∗(a) = lim
a↗2/3

g(pX(3a− 1)) = g(pX(1)) = g(x′) = p′(1) = lim
a↘2/3

p∗(a). (12)

Furthermore, p∗(0) = p(0) = y and p∗(1) = p′(0) = y′. Thus, p∗ is a path from y to

y′.

Lemma 3. If Assumption 1S holds, then ΘP (S) is a path-connected set.

Proof. Using the notation and the arguments just before the statement of Lemma 3 in the

main text, ΘP (·) is a correspondence mapping a path-connected set (cf. Assumption 1S)

into the unit square (with the usual topology). Furthermore, since ΘP (s) is non-empty

(cf. Lemma 1) and a line-segment for every s ∈ S (cf. Remark 1), the correspondence

has path-connected values and the boundaries of these line segments (θL(·) and θH(·))

are continuous selectors of ΘP (·). Finally, ΘP (S) being path-connected follows from an

application of Lemma A1.

Lemma 4. Suppose S ⊂ [0, 1]2 satisfies Assumption 1S and maintain Assumption 2S.

Then ΘP (S)—as defined above—is non-empty. Furthermore, if Assumption 3 holds ad-

ditionally, then ΘP (S) is not a singleton set if and only if S ≠ {(1, 1)}.

Proof. Fix S ⊂ [0, 1]2 that satisfies Assumption 1S and note that for any s ∈ S, Assump-

tion 1 is applicable. Then, Lemma 1 gives that ΘP (s) ̸= ∅. By definition ΘP (s) ⊆ ΘP (S)

and therefore non-emptiness carries over.

Now, assume that Assumption 3 holds too. If S = {(1, 1)}, then ΘP (S) is a singleton

by Lemma 1. If S ≠ {(1, 1)}, then there exists s ∈ S such that s ̸= (1, 1) and, again by

Lemma 1, ΘP (s) is not a singleton. Then, clearly ΘP (S) is not a singelton either.

Theorem 3. Maintain Assumptions 1S, 2S and 3, and let ΘP (S) be the resulting identi-

fied set. Then t is a dilation if and only if (1) S ≠ {(1, 1)} and (2) there exists θ ∈ ΘP (S)

such that θ1 + θ0 = 1.
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Proof. Start with necessity. By Proposition 1 and, in particular Corollary 2, we need to

show that there exist θ, θ′ ∈ ΘP (S) such that θ0 + θ1 ≤ 1 and θ′0 + θ′1 ≥ 1, where at least

one inequality is strict, if and only if S ≠ {(1, 1)} and there exists θ′′ ∈ ΘP (S) such that

θ′′1 + θ′′0 = 1. Suppose there exist θ, θ′ ∈ ΘP (S) such that θ1 + θ0 ≥ 1 and θ′1 + θ′0 ≤ 1

where at least one inequality is strict. By Lemma 3, ΘP (S) is a path-connected set and

therefore there is a path from θ to θ′, which implies that there exists θ′′ ∈ ΘP (S) such

that θ′′1+θ′′0 = 1 (cf. Remark 5). Furthermore, S ≠ {(1, 1)} holds, because if not19 ΘP (S)

would be a singelton as argued in Remark 1, contradicting the existence of θ and θ′ as

they need to be different.

For sufficiency, suppose that S ≠ {(1, 1)} and there exists θ′′ ∈ ΘP (S) with θ′′1+θ′′0 = 1.

Fix s ∈ S such that θ′′ ∈ ΘP (s) and consider two cases:

1. If s ̸= (1, 1), then by Theorem 1 t is a dilation.

2. If s = (1, 1), then by hypothesis, there exists s′ ∈ S with s′ ̸= s and then Lemma 1

ensures that ΘP (s
′) must contain at least two points. Since ΘP (s

′) is a line segment

with positive and finite slope, there must exist θ ∈ ΘP (s
′) such that θ1 + θ0 ̸= 1.

Now set θ′ = θ′′ and apply Proposition 1.

Proposition 3.

DP = D⌞P ∪ S0,

where

D⌞P :=


(s0, s1) ∈ [0, 1]2

(1)EP

[
(θ1 − s1)(ri − 1 + s0)− (s1 − 1 + s0)(ti − 1)ri

]
≥ 0,

(2)EP

[
(−θ1 + 1− s1)(ri − 1 + s0) + (s1 − 1 + s0)tiri

]
≥ 0,

where θ1 = P (t = 1),

(3)EP

[
s1 − ri

]
≥ 0, and

(4)EP

[
s0 − 1 + ri

]
≥ 0.


,

and S0 := {(s0, s1) ∈ [0, 1]2 | s0 + s1 = 1}.
19Note that S is non-empty by Assumption 1S.
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Proof. In the following (1), (2), (3), and (4) refer to the inequalities indicated by the

same numbers in the definition of D⌞P .

First consider s ∈ DP . If s0+ s1 = 1, we have s ∈ S0 and we are done. Thus, consider

s0 + s1 > 1 and we will show that all the moment inequalities of D⌞P are satisfied. First,

note that Ps(y = 1) = P (r=1)+s0−1
s1+s0−1

∈ [0, 1] holds if and only if (3) and (4) hold. To see

this note that the lower bound is equivalent to s0 ≥ 1 − P (r = 1), which is (4), and

the upper bound is s1 ≥ P (r = 1), which is (3). Second, ΘP (s) ̸= ∅ holds if and only

if Ps(y = 1) ∈ [0, 1]. To see this, note that if Ps(y = 1) /∈ [0, 1] then ΘP (s) = ∅ by

convention. Conversely, Ps(y = 1) ∈ (0, 1) makes the first part of Lemma 1 applicable

giving ΘP (s) ̸= ∅. If Ps(y = 1) ∈ {0, 1} then ΘP (s) = [0, 1]2 by definition. Then

note that ΘP (s) ∩ Θ0 ̸= ∅ means that if Ps(y = 1) ∈ (0, 1), then Proposition 2 is

applicable and therefore EP [mj(·, θ, s)] ≥ 0 for all j = 1, . . . , 6 and EP [m7(·, θ, s)] = 0

holds for θ0 + θ1 = 1. The latter then gives θ =
(
P (t = 0), P (t = 1)

)
. With this now

note that EP [m1(·, θ, s)] ≥ 0 is equivalent to (1) and EP [m6(·, θ, s)] ≥ 0 is equivalent

to (2). If Ps(y = 1) = 0, i.e. P (r = 1) = 1 − s0, (4) holds with equality. Since

s1 > 1− s0, (3) holds too. (1) and (2) are, in this case, equivalent to P (t = 0, r = 1) ≥ 0

and P (t = 1, r = 1) ≥ 0, respectively, which hold trivially. If Ps(y = 1) = 1, i.e.

P (r = 1) = s1, (3) holds with equality and since s0 > 1 − s1, (4) holds too. (1) is, in

this case, equivalent to P (t = 1) − P (r = 1) ≥ −P (t = 0, r = 1), which is the same

as P (t = 1) ≥ P (r = 1) − P (t = 0, r = 1) = P (t = 1, r = 1) making it trivially true.

Similarly, (2) is in this case equivalent to P (t = 0)− P (r = 1) ≥ −P (t = 1, r = 1) which

is the same as P (t = 0) ≥ P (r = 1)−P (t = 1, r = 1) = P (t = 0, r = 1) showing that the

inequality holds trivially.

For the other inclusion, if s ∈ S0 or s is such that Ps(y = 1) ∈ {0, 1}, we are done

because ΘP (s) = [0, 1]2 by definition. If s ∈ D⌞P \ S0 such that Ps(y = 1) /∈ {0, 1}, then

by the same argument above, ΘP (s) ̸= ∅ and Ps(y = 1) ∈ (0, 1). We will prove that

θ =
(
P (t = 0), P (t = 1)

)
∈ ΘP (s) ∩ Θ0, establishing that s ∈ DP . Trivially, θ ∈ Θ0.

To show that θ ∈ ΘP (s), we will show that EP [mj(·, θ, s)] ≥ 0 for all j = 1, . . . , 6 and

EP [m7(·, θ, s)] = 0 hold (see Proposition 2). (1) and (2) are equivalent to the inequities

with j = 1 and j = 6. The equality for m7 holds because θ1 = 1 − θ0. The remaining

four inequalities will be established next:



D Proofs for extension section 51

1. (m2 is implied by (3) and (4)) We want to show that

(1− θ1 − s1)
P (r = 1)− 1 + s0

s1 − 1 + s0
≤ P (t = 0, r = 0),

which is true if P (t = 0, r = 0) ≥ 1 − θ1 − s1, because
P (r=1)−1+s0

s1−1+s0
= Ps(y = 1) ∈

[0, 1]. To establish this inequality, recall that P (t = 0) = 1 − P (t = 1) = 1 − θ1

here and then

s1 ≥ P (r = 1) (by (3))

=⇒ s1 ≥ P (t = 0, r = 1)

⇐⇒ P (t = 0) ≥ P (t = 0, r = 1)− s1 + (1− θ1) (±P (t = 0))

⇐⇒ P (t = 0, r = 0) ≥ 1− θ1 − s1.

2. (m3 is essentially equivalent to (3)) We need to show the following inequality:

(1− θ1)
P (r = 1)− 1 + s0

s1 − 1 + s0
≤ P (t = 0),

which holdtrivially if P (t = 0) = 0, because 1− θ1 = θ0 = P (t = 0). If P (t = 0) =

1− θ1 ̸= 0, the the desired inequality holds if and only if

P (r = 1)− 1 + s0
s1 − 1 + s0

≤ 1,

which holds if and only if P (r = 1) ≤ s1, which is m7.

3. (m4 is essentially equivalent to (3)) We need to establish the following inequality:

θ1
P (r = 1)− 1 + s0

s1 − 1 + s0
≤ P (t = 1),

which holds trivially if P (t = 1) = 0, because P (t = 1) = θ1. If P (t = 1) = θ1 ̸= 0

then the inequality holds holds if and only if

P (r = 1)− 1 + s0
s1 − 1 + s0

≤ 1,

which holds if and only if P (r = 1) ≤ s1, which is (3).
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4. (m5 is implied by (3) and (4)) We want to show that

(θ1 − s1)
P (r = 1)− 1 + s0

s1 − 1 + s0
≤ P (t = 1, r = 0),

which is true if P (t = 1, r = 0) ≥ θ1 − s1, because
P (r=1)−1+s0

s1−1+s0
= Ps(y = 1) ∈ [0, 1]

by (3) and (4). To establish this inequality, recall that P (t = 1) = θ1 here and then

s1 ≥ P (r = 1) (by (3))

=⇒ s1 ≥ P (t = 1, r = 1)

⇐⇒ P (t = 1) ≥ P (t = 1, r = 1)− s1 + θ1 (±P (t = 1))

⇐⇒ P (t = 1, r = 0) ≥ θ1 − s1.
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